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Over a Century
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Significance

>2 ft by 2100

Satellite altimetry has shown that global mean sea level has been rising at a rate of -3 +
0.4 mm/y since 1993. Using the altimeter record coupled with careful consideration of
interannual and decadal variability as well as potential instrument errors, we show that this
rate is accelerating at 0.084 + 0.025 mm/y?, which agrees well with climate model
projections. If sea level continues to change at this rate and acceleration, sea-level rise by
2100 (~65 cm) will be more than double the amount if the rate was constant at 3 mm/y.

Abstract

Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-
1, Jason-2, and Jason-3, we estimate the climate-change-driven acceleration of global
mean sea level over the last 25 y to be 0.084 + 0.025 mm/y?. Coupled with the average
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climate-change-driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple
extrapolation of the quadratic implies global mean sea level could rise 65 + 12 cm by 2100
compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate

Change (IPCC) 5th Assessment Report (AR5) model projections.
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acceleration climate change satellite altimetry

Satellite altimeter data collected since 1993 have measured a rise in global mean sea level SOURCE: Steve Nerem/Umversny of Colorado, Boulder ]nS'dECIImate News




665 Billion Tons of Ice Melt Each Year
Greenland 37% Mountain Glaciers 34% Antarctica 29%

Bamber, J.L., et al (2018) The land ice contribution to sea level during the satellite era, Environ. Res. Lett. 13 https://doi.org/10.1088/1748-9326/aac2f0



GRACE — Gravity Recovery & Climate
Experiment, 2002-2017




Antarctic ice melt has ‘tripled
over the past five years’

GRACE Observations of Antarctic Ice Mass Changes ﬂ?’" ,‘,‘,ﬁ"p,“
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The IMBIE team (2018) Mass Balance of the Antarctic Ice Sheet, Nazure, 558, pages219-222, https://doi.org/10.1038/s41586-018-0179-y



Greenland faces a 66% chance that melting
will become unstoppable at 1.8°C

Ice loss, Gigatons
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Trusel, et al., 2018 Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming, 104, Nature, v564, 6 December: https://doi.org/10.1038/s41586-018-0752-4



Mountain Glaciers lost 9,625 billion tons of
ice since 1961, raising sea level almost 1 ft
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M. Zemp et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016, Nature (2019). DOI: 10.1038/s41586-019-1071-0



The ocean is 40% hotter than previously thought.

Global ocean heat content, 1940-2018
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Cheng, L., et al. (2019) How fast are the oceans warming? Science, 2019 DOI: 10.1126/science.aav7619; Cheng L. J. Zhu, and J. Abraham, 2015: Global upper ocean heat content estimation: recent progress and the remaining challenges. Atmospheric
and Oceanic Science Letters, 8. DOI:10.3878/A0SL20150031. ; Glecker, P.J., et al. (2016) Industrial era global ocean heat uptake doubles in recent decades. Nature Climate change. doi:10.1038/nclimate2915




How high will SL rise by 21007

Antarctic ice loss Greenland ice loss Mountain glacier
ice loss

— 1m by 2100

Thermal expansion

E. Rignot (2019) pers. comm.: http://sites.nationalacademies.org/SSB/SSB_191179
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Fourth National Climate Assessment (N‘CM.) Volume I
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» Very likely to rise 0.3—0.6 feet by
2030

e 0.5-1.2 feet by 2050
e 1.0-4.3 feet by 2100

* Emissions now and over the next
20-30 ¥rs have little effect on SLR
in the tirst half of the century

e But significantly affect SLR for the
second half of the century

* Emerging science on Antarctica
suggests, for high emission

scenarios, a SLR exceeding 8 ft by
2100 is phy5|caIIy possible

It is extremely likely that SLR rise
will continue eyond 2100 (high
confidence).
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Change in Sea Level (feet)

NOAA & 4"NCA SL Scenarios
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This means the lowest 2 scenarios
are obsolete.
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Sweet, WV, et al. 2017 Sea level rise. In: Climate Science Special Report: Fourth National Climate Assessment, V'olume I[Wuebbles, D.]., et al.
(eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 333-363, https://science2017.globalchange.gov/chapter/12/



Project Life

SLR Scenario Planning

decision-making under conditions of uncertainty

High Investment, Dangerous Infrastructure:
Power Plants, Waste and Storage Facilities

NOAA
Extreme
8.2 ft

Mayjor Public Infrastructure:
Housing Projects, Transportation
Systems, Drainage Engineering

High Investment Dangerous
Infrastructure: Power Plants,
Waste and Storage Facilities

NOAA High
6.6 ft

Adaptive Design:
Roads, Parcels, New NOAA Major Public Infrastructure:
Buildings (homes), Intermediate Housing Projects, Transportation
Partks High 5 ft Systems, Drainage Engineering

NOAA
Intermediate

Adaptive Design:

Roads, Parcels, New
3.2 ft Buildings (howes),
Parks
>
Low possibility of loss High possibility of loss

Risk — Possibility of losing something of value



SLR Flooding: Nuisance and Permanent

#2. Temporary high tide flooding

* Arrives decades earlier than GMSL
* Has already started
* Accelerating frequency and magnitude
Sea
level
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#l Long term
GMSLR

* ' Permanent, accelerating
inundation
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Disruptive High
Tide Flooding
by Mid-Century

Storm Drain
Backflow at
High Tide
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Department of
Transportation

* 140 miles

* 120 bridges

10-15% all roads
$7.5M per lane mile
$14M per bridge
$15B total




Sunset Beach
3 ft of SLR
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Waikiki at 1m SLR
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nature > scientific reports > articles > article
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Abstract

Wi

Planning community resilience to sea level rise (SLR) requires
information about where, when, and how SLR hazards will impact the
coastal zone. We augment passive flood mapping (the so-called
“bathtub” approach) by simulating physical processes posing recurrent
threats to coastal infrastructure, communities, and ecosystems in
Hawai'i (including tidally-forced direct marine and groundwater
flooding, seasonal wave inundation, and chronic coastal erosion). We
find that the “bathtub” approach, alone, ignores 35-54 percent of the
total land area exposed to one or more of these hazards, depending on
location and SLR scenario. We conclude that modeling dynamic
processes, including waves and erosion, is essential to robust SLR

vulnerability assessment. Results also indicate that as sea level rises,

a natureresearch journal
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The 3.2SLR-XA
Location of both King Tide Flooding and
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High Tide Flooding in Coastal
Honolulu by Decade
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Thompson et al. (2019) A statistical model for frequency of coastal flooding in Honolulu Hawaii, during the 21st Century, JGR Oceans, 10.1029/2018JC014741
UH Sea Level Center: https://uhslc-flooding-test.soest.hawaii.edu



High Tide Flooding in Coastal
Honolulu by Decade
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Thompson et al. (2019) A statistical model for frequency of coastal flooding in Honolulu Hawaii, during the 21st Century, JGR Oceans, 10.1029/2018JC014741
UH Sea Level Center: https://uhslc-flooding-test.soest.hawaii.edu
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