

Environment Testing America

ANALYTICAL REPORT

Eurofins Eaton Monrovia 750 Royal Oaks Drive Suite 100 Monrovia, CA 91016

Tel: (626)386-1100

Laboratory Job ID: 380-12377-1 Client Project/Site: RED-HILL

For:

City & County of Honolulu 630 South Beretania Street Public Service Bldg. Room 308 Honolulu, Hawaii 96843

Attn: Mr. Erwin Kawata

Kapun Plob

Authorized for release by: 10/21/2022 1:14:15 PM Kathleen Robb, Client Program Manager

(949)261-1022

Kathleen.Robb@et.eurofinsus.com

Designee for

Rachelle Arada, Manager of Project Management (626)386-1106

Rachelle.Arada@et.eurofinsus.com

Review your project results through

EO L

Have a Question?

Ask
The Expert

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: RED-HILL

- 1. Laboratory is accredited in accordance with TNI 2016 Standards and ISO/IEC 17025:2017.
- 2. Laboratory certifies that the test results meet all TNI 2016 and ISO/IEC 17025:2017 requirements unless noted under the individual analysis
- 3. Test results relate only to the sample(s) tested.
- 4. This report shall not be reproduced except in full, without the written approval of the laboratory.
- 5. Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. (DW,Water matrices)

Kathleen Robb

Client Program Manager 10/21/2022 1:14:15 PM

3

4

8

9

10

12

13

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	13
QC Association Summary	22
Lab Chronicle	24
Method Summary	25
Sample Summary	26
Subcontract Data	27
Chain of Custody	101
Receipt Checklists	107

3

4

R

9

11

13

14

Definitions/Glossary

Client: City & County of Honolulu Job ID: 380-12377-1

Project/Site: RED-HILL

Qualifiers

Subcontract

Qualifier **Qualifier Description**

This analyte was not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: City & County of Honolulu

Project/Site: RED-HILL

Job ID: 380-12377-1

Laboratory: Eurofins Eaton Monrovia

Narrative

Job Narrative 380-12377-1

Comments

Quarterly Supplemental 8015, 625 testing

Receipt

The samples were received on 7/27/2022 10:15 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 3.8° C and 5.0° C.

Subcontract non-Sister

See attached subcontract report.

Subcontract Work

Methods 8015 Diesel LL (EAL) and Motor Oil, 8015 Ethanol, 8015 Gas (Purgeable) LL (EAL), 8015 Jet Fuel 5 (JP5), 8015 Jet Fuel 8 (JP8): These methods were subcontracted to EMAX Laboratories Inc. The subcontract laboratory certifications are different from that of the facility issuing the final report.

Methods 625 Acid LL (EAL) Physis, 625 Base Neutral LL (EAL) Physis, 625 PAH Physis LL (EAL) + TICs: These methods were subcontracted to Physis Environmental Laboratories. The subcontract laboratory certifications are different from that of the facility issuing the final report.

Job ID: 380-12377-1

6

4

5

6

4

0

10

4 4

12

13

Detection Summary

Client: City & County of Honolulu Job ID: 380-12377-1

Project/Site: RED-HILL

Client Sample ID: AIEA GULCH WELLS PUMP 1 Lab Sample ID: 380-12377-1 (331-201-TP071)

No Detections.

Client Sample ID: TB:AIEA GULCH WELLS P1 (331-201-TP071) Lab Sample ID: 380-12377-2

No Detections.

2

5

_

8

10

4.6

13

4 5

Client Sample Results

Client: City & County of Honolulu Job ID: 380-12377-1

Project/Site: RED-HILL

Client Sample ID: AIEA GULCH WELLS PUMP 1

(331-201-TP071)

Date Collected: 07/25/22 09:37 Matrix: Drinking Water

Date Received: 07/27/22 10:15

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1-Methylnaphthalene	ND	0.005	0.001	μg/L		07/28/22 00:00	09/01/22 04:42	
1-Methylphenanthrene	ND	0.005	0.001	μg/L		07/28/22 00:00	09/01/22 04:42	
2,3,5-Trimethylnaphthalene	ND	0.005	0.001	μg/L		07/28/22 00:00	09/01/22 04:42	
2,4,5-Trichlorophenol	ND	0.1	0.05	μg/L		07/28/22 00:00	09/01/22 04:42	
2,4,6-Trichlorophenol	ND	0.1	0.05	μg/L		07/28/22 00:00	09/01/22 04:42	
2,4-Dichlorophenol	ND	0.1	0.05	μg/L		07/28/22 00:00	09/01/22 04:42	
2,4-Dinitrophenol	ND	0.2	0.1	μg/L		07/28/22 00:00	09/01/22 04:42	
2,6-Dichlorophenol	ND	0.1		μg/L		07/28/22 00:00	09/01/22 04:42	
2,6-Dimethylnaphthalene	ND	0.005	0.001	μg/L		07/28/22 00:00	09/01/22 04:42	
2,6-Di-tert-butyl-4-methylphenol	ND	0.1	0.05	μg/L		07/28/22 00:00	09/01/22 04:42	
2,6-Di-tert-butylphenol	ND	0.1		μg/L		07/28/22 00:00	09/01/22 04:42	
2-Chloronaphthalene	ND	0.1		μg/L		07/28/22 00:00	09/01/22 04:42	
2-Chlorophenol	ND	0.1		μg/L			09/01/22 04:42	
2-Methyl-4,6-dinitrophenol	ND	0.2		μg/L			09/01/22 04:42	
2-Methylnaphthalene	ND	0.005	0.001	. •			09/01/22 04:42	
2-Methylphenol	ND	0.2		μg/L			09/01/22 04:42	
2-Nitroaniline	ND	0.1		μg/L			09/01/22 04:42	
2-Nitrophenol	ND	0.2	0.1	μg/L			09/01/22 04:42	
3+4-Methylphenol	ND	0.2		μg/L			09/01/22 04:42	
3-Nitroaniline	ND	0.1		μg/L			09/01/22 04:42	
4-Bromophenylphenyl ether	ND	0.1		μg/L			09/01/22 04:42	
4-Chloro-3-methylphenol	ND	0.2		μg/L			09/01/22 04:42	
4-Chloroaniline	ND	0.1		μg/L			09/01/22 04:42	
4-Chlorophenylphenyl ether	ND	0.1		μg/L μg/L			09/01/22 04:42	
4-Nitroaniline	ND	0.1		μg/L			09/01/22 04:42	
4-Nitrophenol	ND	0.1		μg/L μg/L			09/01/22 04:42	
6-tert-butyl-2,4-dimethylphenol	ND	0.2		μg/L μg/L			09/01/22 04:42	
Acenaphthene	ND	0.005	0.001				09/01/22 04:42	
Acenaphthylene	ND	0.005	0.001				09/01/22 04:42	
Aniline	ND ND	0.003		μg/L μg/L			09/01/22 04:42	
Anthracene	ND	0.005					09/01/22 04:42	
Benz[a]anthracene	ND ND	0.005	0.001	. •			09/01/22 04:42	
• •	ND ND	0.003						
Benzidine	ND	0.005	0.001	µg/L			09/01/22 04:42 09/01/22 04:42	
Benzo[a]pyrene Benzo[b]fluoranthene	ND ND	0.005		μg/L			09/01/22 04:42	
		0.005	0.001				09/01/22 04:42	
Benzo[e]pyrene	ND		0.001					
Benzo[g,h,i]perylene	ND ND	0.005	0.001				09/01/22 04:42	
Benzo[k]fluoranthene	ND	0.005	0.001				09/01/22 04:42	
Benzoic Acid	ND	0.2		µg/L			09/01/22 04:42	
Benzyl Alcohol	ND	0.2		μg/L			09/01/22 04:42	
Biphenyl	ND	0.005	0.001				09/01/22 04:42	
Bis(2-Chloroethoxy) methane	ND	0.1		μg/L			09/01/22 04:42	
Bis(2-Chloroethyl) ether	ND	0.1		μg/L			09/01/22 04:42	
Bis(2-Chloroisopropyl) ether	ND	0.1		μg/L			09/01/22 04:42	
Chrysene	ND	0.005	0.001				09/01/22 04:42	
Dibenz[a,h]anthracene	ND	0.005	0.001				09/01/22 04:42	
Dibenzo[a,l]pyrene	ND	0.005	0.001	μg/L		07/28/22 00:00	09/01/22 04:42	

Eurofins Eaton Monrovia

Page 7 of 107

2

3

Lab Sample ID: 380-12377-1

6

8

10

12

14

Lab Sample ID: 380-12377-1

Project/Site: RED-HILL

Client Sample ID: AIEA GULCH WELLS PUMP 1

(331-201-TP071)

Date Collected: 07/25/22 09:37 **Matrix: Drinking Water**

Date Received: 07/27/22 10:15

BROMOFLUOROBENZENE

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenzothiophene	ND		0.005	0.001	μg/L		07/28/22 00:00	09/01/22 04:42	1
Disalicylidenepropanediamine	ND		0.1	0.05	μg/L		07/28/22 00:00	09/01/22 04:42	1
Fluoranthene	ND		0.005	0.001	μg/L		07/28/22 00:00	09/01/22 04:42	1
Fluorene	ND		0.005	0.001			07/28/22 00:00	09/01/22 04:42	1
Hexachloroethane	ND		0.1	0.05	μg/L		07/28/22 00:00	09/01/22 04:42	1
ndeno[1,2,3-cd]pyrene	ND		0.005	0.001	μg/L		07/28/22 00:00	09/01/22 04:42	1
Naphthalene	ND		0.005	0.001			07/28/22 00:00	09/01/22 04:42	1
Nitrobenzene	ND		0.1		μg/L		07/28/22 00:00	09/01/22 04:42	1
N-Nitrosodi-n-propylamine	ND		0.1		μg/L		07/28/22 00:00	09/01/22 04:42	1
N-Nitrosodiphenylamine	ND		0.1		μg/L		07/28/22 00:00	09/01/22 04:42	1
Pentachlorophenol	ND		0.1		μg/L			09/01/22 04:42	1
Perylene	ND		0.005	0.001	μg/L			09/01/22 04:42	1
Phenanthrene	ND		0.005	0.001	µg/L			09/01/22 04:42	1
Phenol	ND		0.2	0.1	μg/L			09/01/22 04:42	1
o-tert-Butylphenol	ND		0.1	0.05	μg/L			09/01/22 04:42	1
Pyrene	ND		0.005	0.001	μg/L			09/01/22 04:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
(2,4,6-Tribromophenol)			31 - 143				07/28/22 00:00	09/01/22 04:42	
(d10-Acenaphthene)	55		45 - 118				07/28/22 00:00	09/01/22 04:42	1
(d10-Phenanthrene)	59		56 ₋ 123				07/28/22 00:00	09/01/22 04:42	1
(d12-Chrysene)	71		36 - 142					09/01/22 04:42	
(d12-Perylene)	66		36 - 161					09/01/22 04:42	1
(d5-Phenol)	43		0 - 85					09/01/22 04:42	1
(d8-Naphthalene)	49		20 - 112					09/01/22 04:42	
Method: 8015 Diesel LL (EA	AL) and Motor	Oil - 8015	- TPH DRO/C	RO					
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DIESEL	ND	U	0.027		mg/L		·	08/02/22 16:55	1
JP5	ND	U	0.055		mg/L			08/02/22 16:55	1
JP8	ND	U	0.055		mg/L			08/02/22 16:55	1
MOTOR OIL	ND	U	0.055		mg/L			08/02/22 16:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
BROMOBENZENE			60 - 130				<u> </u>	08/02/22 16:55	
HEXACOSANE	93		60 - 130					08/02/22 16:55	1
Method: 8015 Ethanol - SW	846 8015B Ga	solino Par	ngo Organics						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
ETHANOL	ND	U	2000		ug/L			07/29/22 14:13	1
Method: 8015 Gas (Purgeat	ole) LL (EAL) -	SW846 80	15B Gasolin	e Range	Organic	S			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
GASOLINE	ND	U	0.02		mg/L			07/28/22 18:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
								07/00/00 40:00	

07/28/22 18:26

60 - 140

Client Sample Results

Client: City & County of Honolulu Job ID: 380-12377-1

Project/Site: RED-HILL

Client Sample ID: TB:AIEA GULCH WELLS P1 (331-201-TP071) Lab Sample ID: 380-12377-2

Date Collected: 07/25/22 09:37

Matrix: Water

Date Received: 07/27/22 10:15

Method: 8015 Gas (Purgeable)) LL (EAL) - SW846 8015E	3 Gasolin	e Range Organics	S
Analyto	Popult Qualifier	DI	MDI Unit	D

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
GASOLINE	ND	U	0.02		mg/L			07/28/22 20:12	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
BROMOFLUOROBENZENE	91		60 - 140			-		07/28/22 20:12		

5

6

Q

9

11

12

14

Client: City & County of Honolulu

Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i

Matrix: Drinking Water Prep Type: Total/NA

			Pe	rcent Surre	ogate Recov	ery (Acce	ptance Limit	ts)	
		Acenapht	Phenanth	CRY	NPT	PHL	PRY	TBP	
Lab Sample ID	Client Sample ID	(45-118)	(56-123)	(36-142)	(20-112)	(0-85)	(36-161)	(31-143)	
380-12377-1	AIFA GUI CH WELLS PUMP 1 (55	59	71	49	43	66	59	

Surrogate Legend

(d10-Acenaphthene) = (d10-Acenaphthene)

(d10-Phenanthrene) = (d10-Phenanthrene)

CRY = (d12-Chrysene)

NPT = (d8-Naphthalene)

PHL = (d5-Phenol)

PRY = (d12-Perylene)

TBP = (2,4,6-Tribromophenol)

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i

Matrix: water Prep Type: Total/NA

			Pe	rcent Surro	ogate Reco	very (Accer	tance Limi	ts)
		Acenapht	Phenanth	CRY	NPT	PHL	PRY	TBP
Lab Sample ID	Client Sample ID	(65-113)	(80-111)	(60-139)	(44-119)	(20-121)	(36-161)	(44-159)
98812-B1	Method Blank	93	93	98	86	102	90	80
98812-BS1	Lab Control Sample	98	97	105	87	104	99	79
98812-BS2	Lab Control Sample Dup	97	98	100	84	97	98	80

Surrogate Legend

(d10-Acenaphthene) = (d10-Acenaphthene)

(d10-Phenanthrene) = (d10-Phenanthrene)

CRY = (d12-Chrysene)

NPT = (d8-Naphthalene)

PHL = (d5-Phenol)

PRY = (d12-Perylene)

TBP = (2,4,6-Tribromophenol)

Method: 8015 Diesel LL (EAL) and Motor Oil - 8015 - TPH DRO/ORO

Matrix: Drinking Water Prep Type: Total/NA

-			Perc
		ВВ	XACOSA
Lab Sample ID	Client Sample ID	(60-130)	(60-130)
380-12377-1	AIEA GULCH WELLS PUMP 1 (71	93
Surrogate Legend			
BB = BROMOBENZENE			
HEXACOSANE = HEXAC	COSANE		

Method: 8015 Diesel LL (EAL) and Motor Oil - 8015 - TPH DRO/ORO

Matrix: WATER Prep Type: Total/NA

_			Perc
		ВВ	XACOSA
Lab Sample ID	Client Sample ID	(60-130)	(60-130)
22DSH001WC	LCD	85	94
22DSH001WL	Lab Control Sample	80	90
22G287-01M	Matrix Spike	73	94
22G287-01M	Matrix Spike	69	90

Page 10 of 107

Job ID: 380-12377-1

Eurofins Eaton Monrovia

Method: 8015 Diesel LL (EAL) and Motor Oil - 8015 - TPH DRO/ORO (Continued)

Matrix: WATER Prep Type: Total/NA

<u> </u>	Client Sample ID	BB (60-130)	(ACOSAI (60-130)	
	<u> </u>	(60-130)	(60-130)	
22G287-01S	Matrice Coultry Described to		,,	
	Matrix Spike Duplicate	70	95	
22G287-01S	Matrix Spike Duplicate	77	93	
22J5H001WC	LCD	88	91	
22J5H001WL	Lab Control Sample	92	92	
22J8H001WC	LCD	91	95	
22J8H001WL I	Lab Control Sample	102	95	

BB = BROMOBENZENE

HEXACOSANE = HEXACOSANE

Method: 8015 Diesel LL (EAL) and Motor Oil - 8015 - TPH DRO/ORO

Matrix: WATER Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BB	XACOSAI
Lab Sample ID	Client Sample ID		
22DSH001WB	Method Blank		
Surrogate Legend			
BB = BROMOBENZ	ZENE		
HEXACOSANE = F	IEXACOSANE		

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: Drinking Water Prep Type: Total/NA

Lab Sample ID Client Sample ID (60-140) 380-12377-1 AIEA GULCH WELLS PUMP 1 (91)	very (Acceptance Limits)	P		
		3FB		
380-12377-1 AIEA GULCH WELLS PUMP 1 (91		-140)	ple ID	Lab Sample ID
		91	CH WELLS PUMP 1 (380-12377-1
Surrogate Legend				Surrogate Legend

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		BFB	
Lab Sample ID	Client Sample ID	(60-140)	
380-12377-2	TB:AIEA GULCH WELLS P1 (33	91	
Surrogate Legend			
BFB = BROMOFLUC	DROBENZENE		

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: WATER Prep Type: Total/NA

-			Percent Surrogate Recovery (A	Acceptance Limi
		BFB		
Lab Sample ID	Client Sample ID	(60-140)		
22G287-01M	Matrix Spike	113		
22G287-01S	Matrix Spike Duplicate	111		

Eurofins Eaton Monrovia

Page 11 of 107

10/21/2022

Surrogate Summary

Client: City & County of Honolulu

Project/Site: RED-HILL

Surrogate Legend

BFB = BROMOFLUOROBENZENE

Job ID: 380-12377-1

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: WATER Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

BFB

Lab Sample IDClient Sample ID22VGH7G06BMethod Blank

Surrogate Legend

BFB = BROMOFLUOROBENZENE

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Matrix: WATER Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

BFB (70-130)

 Lab Sample ID
 Client Sample ID
 (70-130

 22VGH7G06C
 LCD
 109

 22VGH7G06L
 Lab Control Sample
 112

Surrogate Legend

BFB = BROMOFLUOROBENZENE

Eurofins Eaton Monrovia

QC Sample Results

Client: City & County of Honolulu Job ID: 380-12377-1

Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i

Lab Sample ID: 98812-B1

Matrix: water

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: O-38096 P

Analysis Batch: O-38096	Blank	Blank						p Batch: O-3	_
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	ND		0.005	0.001	μg/L		07/28/22 00:00	08/31/22 23:31	1
1-Methylphenanthrene	ND		0.005	0.001	μg/L		07/28/22 00:00	08/31/22 23:31	1
2,3,5-Trimethylnaphthalene	ND		0.005	0.001	μg/L		07/28/22 00:00	08/31/22 23:31	1
2,4,5-Trichlorophenol	ND		0.1	0.05	μg/L		07/28/22 00:00	08/31/22 23:31	1
2,4,6-Trichlorophenol	ND		0.1	0.05	μg/L		07/28/22 00:00	08/31/22 23:31	1
2,4-Dichlorophenol	ND		0.1	0.05	μg/L		07/28/22 00:00	08/31/22 23:31	1
2,4-Dinitrophenol	ND		0.2	0.1	μg/L		07/28/22 00:00	08/31/22 23:31	1
2,6-Dichlorophenol	ND		0.1	0.05	μg/L		07/28/22 00:00	08/31/22 23:31	1
2,6-Dimethylnaphthalene	ND		0.005	0.001	μg/L		07/28/22 00:00	08/31/22 23:31	1
2,6-Di-tert-butyl-4-methylphenol	ND		0.1	0.05	μg/L		07/28/22 00:00	08/31/22 23:31	1
2,6-Di-tert-butylphenol	ND		0.1	0.05			07/28/22 00:00	08/31/22 23:31	1
2-Chloronaphthalene	ND		0.1	0.05			07/28/22 00:00	08/31/22 23:31	1
2-Chlorophenol	ND		0.1		μg/L		07/28/22 00:00	08/31/22 23:31	1
2-Methyl-4,6-dinitrophenol	ND		0.2		μg/L		07/28/22 00:00	08/31/22 23:31	1
2-Methylnaphthalene	ND		0.005	0.001				08/31/22 23:31	1
2-Methylphenol	ND		0.2		μg/L			08/31/22 23:31	1
2-Nitroaniline	ND		0.1		μg/L		07/28/22 00:00		1
2-Nitrophenol	ND		0.2		μg/L			08/31/22 23:31	1
3+4-Methylphenol	ND		0.2		μg/L			08/31/22 23:31	1
3-Nitroaniline	ND		0.1	0.05			07/28/22 00:00		1
4-Bromophenylphenyl ether	ND		0.1		µg/L		07/28/22 00:00		1
4-Chloro-3-methylphenol	ND		0.2					08/31/22 23:31	1
4-Chloroaniline	ND		0.1	0.05			07/28/22 00:00	08/31/22 23:31	1
4-Chlorophenylphenyl ether	ND		0.1	0.05			07/28/22 00:00	08/31/22 23:31	1
4-Nitroaniline	ND		0.1	0.05				08/31/22 23:31	· · · · · · · · · · · · · · · · · · ·
4-Nitrophenol	ND		0.2		µg/L			08/31/22 23:31	1
6-tert-butyl-2,4-dimethylphenol	ND		0.1		μg/L		07/28/22 00:00		1
Acenaphthene	ND		0.005	0.001				08/31/22 23:31	
Acenaphthylene	ND		0.005	0.001			07/28/22 00:00		1
Aniline	ND		0.003	0.05	. •		07/28/22 00:00	08/31/22 23:31	1
Anthracene	ND		0.005	0.001			07/28/22 00:00		
Benz[a]anthracene	ND		0.005	0.001	. •		07/28/22 00:00		1
Benzidine	ND		0.003	0.05	. •			08/31/22 23:31	1
Benzo[a]pyrene	ND		0.005	0.001				08/31/22 23:31	1
Benzo[b]fluoranthene	ND		0.005	0.001				08/31/22 23:31	1
Benzo[e]pyrene	ND		0.005		. •			08/31/22 23:31	1
Benzo[g,h,i]perylene	ND		0.005	0.001 0.001				08/31/22 23:31	1
	ND ND		0.005						
Benzo[k]fluoranthene Benzoic Acid	ND		0.005	0.001				08/31/22 23:31	1
					µg/L			08/31/22 23:31	
Benzyl Alcohol	ND		0.2		µg/L			08/31/22 23:31	1
Biphenyl	ND		0.005	0.001				08/31/22 23:31	1
Bis(2-Chloroethoxy) methane	ND		0.1	0.05				08/31/22 23:31	
Bis(2-Chloroethyl) ether	ND		0.1		μg/L			08/31/22 23:31	1
Bis(2-Chloroisopropyl) ether	ND		0.1		µg/L			08/31/22 23:31	1
Chrysene	ND		0.005	0.001				08/31/22 23:31	1
Dibenz[a,h]anthracene	ND		0.005	0.001				08/31/22 23:31	1
Dibenzo[a,l]pyrene	ND		0.005	0.001	μg/L μg/L		07/28/22 00:00	08/31/22 23:31 08/31/22 23:31	1

Eurofins Eaton Monrovia

4

6

8

9

11

13

Client: City & County of Honolulu Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i (Continued)

Lab Sample ID: 98812-B1

Matrix: water

Analysis Batch: O-38096

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: O-38096_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenzothiophene	ND		0.005	0.001	μg/L		07/28/22 00:00	08/31/22 23:31	1
Disalicylidenepropanediamine	ND		0.1	0.05	μg/L		07/28/22 00:00	08/31/22 23:31	1
Fluoranthene	ND		0.005	0.001	μg/L		07/28/22 00:00	08/31/22 23:31	1
Fluorene	ND		0.005	0.001	μg/L		07/28/22 00:00	08/31/22 23:31	1
Hexachloroethane	ND		0.1	0.05	μg/L		07/28/22 00:00	08/31/22 23:31	1
Indeno[1,2,3-cd]pyrene	ND		0.005	0.001	μg/L		07/28/22 00:00	08/31/22 23:31	1
Naphthalene	ND		0.005	0.001	μg/L		07/28/22 00:00	08/31/22 23:31	1
Nitrobenzene	ND		0.1	0.05	μg/L		07/28/22 00:00	08/31/22 23:31	1
N-Nitrosodi-n-propylamine	ND		0.1	0.05	μg/L		07/28/22 00:00	08/31/22 23:31	1
N-Nitrosodiphenylamine	ND		0.1	0.05	μg/L		07/28/22 00:00	08/31/22 23:31	1
Pentachlorophenol	ND		0.1	0.05	μg/L		07/28/22 00:00	08/31/22 23:31	1
Perylene	ND		0.005	0.001	μg/L		07/28/22 00:00	08/31/22 23:31	1
Phenanthrene	ND		0.005	0.001	μg/L		07/28/22 00:00	08/31/22 23:31	1
Phenol	ND		0.2	0.1	μg/L		07/28/22 00:00	08/31/22 23:31	1
p-tert-Butylphenol	ND		0.1	0.05	μg/L		07/28/22 00:00	08/31/22 23:31	1
Pyrene	ND		0.005	0.001	μg/L		07/28/22 00:00	08/31/22 23:31	1

	Blank	Blank				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
(2,4,6-Tribromophenol)	80		44 - 159	07/28/22 00:00	08/31/22 23:31	1
(d10-Acenaphthene)	93		65 - 113	07/28/22 00:00	08/31/22 23:31	1
(d10-Phenanthrene)	93		80 - 111	07/28/22 00:00	08/31/22 23:31	1
(d12-Chrysene)	98		60 - 139	07/28/22 00:00	08/31/22 23:31	1
(d12-Perylene)	90		36 - 161	07/28/22 00:00	08/31/22 23:31	1
(d5-Phenol)	102		20 - 121	07/28/22 00:00	08/31/22 23:31	1
(d8-Naphthalene)	86		44 - 119	07/28/22 00:00	08/31/22 23:31	1

Lab Sample ID: 98812-BS1

Matrix: water

Analysis Batch: O-38096

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: O-38096_P

/ many one Date in C Cocco								
•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1-Methylnaphthalene	0.5	0.439		μg/L		88	49 - 117	
1-Methylphenanthrene	0.5	0.512		μg/L		102	66 - 127	
2,3,5-Trimethylnaphthalene	0.5	0.456		μg/L		91	57 - 120	
2,4,5-Trichlorophenol	1	0.871		μg/L		87	57 - 116	
2,4,6-Trichlorophenol	1	0.86		μg/L		86	56 - 118	
2,4-Dichlorophenol	1	0.84		μg/L		84	51 - 117	
2,4-Dinitrophenol	1	0.561		μg/L		56	0 - 152	
2,6-Dichlorophenol	1	0.855		μg/L		86	30 - 130	
2,6-Dimethylnaphthalene	0.5	0.45		μg/L		90	54 - 117	
2,6-Di-tert-butyl-4-methylphenol	1	0.725		μg/L		73	50 - 150	
2,6-Di-tert-butylphenol	1	0.773		μg/L		77	50 - 150	
2-Chloronaphthalene	1	0.88		μg/L		88	53 - 130	
2-Chlorophenol	1	0.77		μg/L		77	41 - 120	
2-Methyl-4,6-dinitrophenol	1	0.666		μg/L		67	0 - 141	
2-Methylnaphthalene	1.5	1.43		μg/L		95	47 - 130	
2-Methylphenol	1	0.82		μg/L		82	40 - 117	
2-Nitroaniline	1	0.963		μg/L		96	69 - 114	

Eurofins Eaton Monrovia

Page 14 of 107

QC Sample Results

Client: City & County of Honolulu

Project/Site: RED-HILL

Job ID: 380-12377-1

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i (Continued)

Lab Sample ID: 98812-BS1

Matrix: water

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA
	Pron Ratch: 0-38096 P

Analysis Batch: O-38096				Prep Batch: O-3809				
	Spike		LCS				%Rec	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
2-Nitrophenol	1	0.558		μg/L		56	40 - 117	
3+4-Methylphenol	1	0.8		μg/L		80	0 - 130	
3-Nitroaniline	1	1.16		μg/L		116	23 - 137	
4-Bromophenylphenyl ether	1	0.922		μg/L		92	61 - 132	
4-Chloro-3-methylphenol	1	0.824		μg/L		82	51 - 128	
4-Chloroaniline	1	0.839		μg/L		84	50 - 150	
4-Chlorophenylphenyl ether	1	0.93		μg/L		93	63 - 130	
4-Nitroaniline	2	2.29		μg/L		114	10 - 159	
4-Nitrophenol	1	0.885		μg/L		88	10 - 164	
6-tert-butyl-2,4-dimethylphenol	1	0.815		μg/L		81	50 - 150	
Acenaphthene	1.5	1.5		μg/L		100	53 - 131	
Acenaphthylene	1.5	1.53		μg/L		102	43 - 140	
Aniline	0.5	0.531		μg/L		106	50 - 150	
Anthracene	1.5	1.4		μg/L		93	58 - 135	
Benz[a]anthracene	1.5	1.4		μg/L		93	55 - 145	
Benzidine	1	0.0367		μg/L		4	0 - 125	
Benzo[a]pyrene	1.5	1.31		μg/L		87	51 - 143	
Benzo[b]fluoranthene	1.5	1.42		μg/L		95	46 - 165	
Benzo[e]pyrene	0.5	0.486		μg/L		97	42 - 152	
Benzo[g,h,i]perylene	1.5	1.51		μg/L		101	63 - 133	
Benzo[k]fluoranthene	1.5	1.34		μg/L		89	56 - 145	
Benzoic Acid	1	0.541		μg/L		54	2 - 145	
Benzyl Alcohol	1	0.784		μg/L		78	43 - 148	
Biphenyl	0.5	0.459		μg/L		92	56 - 119	
Bis(2-Chloroethoxy) methane	1	0.903		μg/L		90	66 - 122	
Bis(2-Chloroethyl) ether	1	0.667		μg/L		67	43 - 127	
Bis(2-Chloroisopropyl) ether	1	1.08		μg/L		108	49 - 128	
Chrysene	1.5	1.35		μg/L		90	56 - 141	
Dibenz[a,h]anthracene	1.5	1.42		μg/L		95	55 - 150	
Dibenzo[a,l]pyrene	0.5	0.485		μg/L		97	50 - 150	
Dibenzofuran	1	0.899		μg/L		90	50 - 150	
Dibenzothiophene	0.5	0.43		μg/L		86	75 - 113	
Disalicylidenepropanediamine	50	36.8		μg/L		74	50 - 150	
Fluoranthene	1.5	1.37		μg/L		91	60 - 146	
Fluorene	1.5	1.59		μg/L		106	58 - 131	
Hexachloroethane	1	0.772		μg/L		77	27 - 130	
Indeno[1,2,3-cd]pyrene	1.5	1.39		μg/L		93	50 - 151	
Naphthalene	1.5	1.33		μg/L		89	41 - 126	
Nitrobenzene	1	0.8		μg/L		80	54 - 111	
N-Nitrosodi-n-propylamine	1	0.869		μg/L		87	61 - 152	
N-Nitrosodiphenylamine	1	1.01		μg/L		101	49 - 142	
Pentachlorophenol	1	0.908		μg/L		91	36 - 111	
Perylene	0.5	0.477		μg/L		95	48 - 141	
Phenanthrene	1.5	1.43		μg/L		95	67 - 127	
Phenol	1	0.674		μg/L		67	29 - 114	
p-tert-Butylphenol	1	1.03		μg/L		103	50 - 150	
Pyrene	1.5	1.37		μg/L		91	54 - 156	
1 310110	1.5	1.07		µ9, ∟		31	0-7 100	

Eurofins Eaton Monrovia

QC Sample Results

Client: City & County of Honolulu Job ID: 380-12377-1

Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i (Continued)

Limits

Lab Sample ID: 98812-BS1

Matrix: water

Surrogate

Analysis Batch: O-38096

4-Bromophenylphenyl ether

4-Chlorophenylphenyl ether

6-tert-butyl-2,4-dimethylphenol

4-Chloro-3-methylphenol

4-Chloroaniline

4-Nitroaniline

4-Nitrophenol

Acenaphthene

Aniline

Anthracene

Benzidine

Acenaphthylene

Benz[a]anthracene

Benzo[b]fluoranthene

Benzo[a]pyrene

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: O-38096_P

%Recovery Qualifier 79

LCS LCS

(2,4,6-Tribromophenol) 44 - 159 (d10-Acenaphthene) 98 65 - 113 (d10-Phenanthrene) 97 80 - 111 (d12-Chrysene) 105 60 - 139 99 36 - 161 (d12-Perylene) (d5-Phenol) 104 20 - 121 (d8-Naphthalene) 87 44 - 119

94

87

101

91

136

98

86

100

102

122

93

92

4

85

61 - 132

51 - 128

50 - 150

63 - 130

10 - 159

10 - 164

50 - 150

53 - 131

43 - 140

50 - 150

58 - 135

55 - 145

0 - 125

51 - 143

46 - 165

Analyte Added Result Qualifier Unit D WRec Limits RPD Limits 1-Methylnaphthalene 0.5 0.454 µg/L 91 49-117 3 3 3 1-Methylphenanthrene 0.5 0.518 µg/L 104 66-127 2 3 3 2,3.5-Trinethylnaphthalene 0.5 0.47 µg/L 88 57-116 1 3 3 2,4.5-Trichlorophenol 1 0.883 µg/L 88 57-116 1 3 30 2,4.6-Trichlorophenol 1 0.883 µg/L 85 51-117 1 30 2,4-Dichlorophenol 1 0.805 µg/L 85 51-117 1 30 2,4-Dichlorophenol 1 0.852 µg/L 85 51-117 1 30 2,6-Diniderbylhaphthalene 0 0 0 1 0.84 µg/L 83 30-130 4 30 <t< th=""><th>Lab Sample ID: 98812-BS2 Matrix: water Analysis Batch: O-38096</th><th></th><th></th><th>C</th><th>Client Sa</th><th>ample</th><th></th><th>Control Prep Ty rep Batch</th><th>pe: Tot</th><th>al/NA</th></t<>	Lab Sample ID: 98812-BS2 Matrix: water Analysis Batch: O-38096			C	Client Sa	ample		Control Prep Ty rep Batch	pe: Tot	al/NA
1-Methylnaphthalene 0.5 0.454 μg/L 91 49 - 117 3 30 1-Methylphenanthrene 0.5 0.518 μg/L 104 66 - 127 2 30 2,3,5-Trimethylnaphthalene 0.5 0.47 μg/L 94 57 - 120 3 30 2,4,5-Trichlorophenol 1 0.883 μg/L 88 57 - 116 1 30 2,4,6-Trichlorophenol 1 0.915 μg/L 92 56 - 118 7 30 2,4-Dichlorophenol 1 0.852 μg/L 85 51 - 117 1 30 2,4-Dichlorophenol 1 0.56 μg/L 85 51 - 117 1 30 2,4-Dichlorophenol 1 0.56 μg/L 85 51 - 117 1 30 2,6-Dichlorophenol 1 0.834 μg/L 83 30 - 130 4 30 2,6-Di-tert-butyl-4-methylphenol 1 0.752 μg/L 75 50 - 150 3 <th></th> <th>Spike</th> <th>LCS DUP</th> <th>LCS DUP</th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th>_</th>		Spike	LCS DUP	LCS DUP				•		_
1-Methylphenanthrene 0.5 0.518 µg/L 104 66 - 127 2 30 2,3,5-Trimethylnaphthalene 0.5 0.47 µg/L 94 57 - 120 3 30 2,4,5-Trichlorophenol 1 0.883 µg/L 88 57 - 116 1 30 2,4,6-Trichlorophenol 1 0.915 µg/L 92 56 - 118 7 30 2,4-Dichlorophenol 1 0.852 µg/L 85 51 - 117 1 30 2,4-Dinitrophenol 1 0.852 µg/L 85 51 - 117 1 30 2,4-Dinitrophenol 1 0.862 µg/L 85 51 - 117 1 30 2,6-Dichlorophenol 1 0.834 µg/L 83 30 - 130 4 30 2,6-Dinethylnaphthalene 0.5 0.471 µg/L 94 54 - 117 4 30 2,6-Di-tert-butyl-4-methylphenol 1 0.752 µg/L 75 50 - 150 4 30 2,6-Di-tert-butyl-4henol 1 0.899 µg/L <t< th=""><th>Analyte</th><th>Added</th><th>Result</th><th>Qualifier</th><th>Unit</th><th>D</th><th>%Rec</th><th>Limits</th><th>RPD</th><th>Limit</th></t<>	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,5-Trimethylnaphthalene 0.5 0.47 µg/L 94 57 · 120 3 30 2,4,5-Trichlorophenol 1 0.883 µg/L 88 57 · 116 1 30 2,4,6-Trichlorophenol 1 0.915 µg/L 92 56 · 118 7 30 2,4-Dichlorophenol 1 0.852 µg/L 85 51 · 117 1 30 2,4-Dinitrophenol 1 0.56 µg/L 56 0 · 152 0 30 2,6-Dichlorophenol 1 0.834 µg/L 83 30 · 130 4 30 2,6-Dichlorophenol 1 0.834 µg/L 94 54 · 117 4 30 2,6-Dinethylnaphthalene 0.5 0.471 µg/L 94 54 · 117 4 30 2,6-Di-tert-butyl-4-methylphenol 1 0.752 µg/L 75 50 · 150 3 30 2,6-Di-tert-butyl-4-methylphenol 1 0.792 µg/L 79 50 · 150 3 30 2,-Chloronaphthalene 1 0.729 µg/L	1-Methylnaphthalene	0.5	0.454		μg/L		91	49 - 117	3	30
2,4,5-Trichlorophenol 1 0.883 µg/L 88 57 - 116 1 30 2,4,6-Trichlorophenol 1 0.915 µg/L 92 56 - 118 7 30 2,4-Dichlorophenol 1 0.852 µg/L 85 51 - 117 1 30 2,4-Dinitrophenol 1 0.56 µg/L 56 0 - 152 0 30 2,6-Dichlorophenol 1 0.834 µg/L 83 30 - 130 4 30 2,6-Dimethylnaphthalene 0.5 0.471 µg/L 94 54 - 117 4 30 2,6-Di-tert-butyl-4-methylphenol 1 0.752 µg/L 75 50 - 150 4 30 2,6-Di-tert-butylphenol 1 0.792 µg/L 79 50 - 150 3 30 2,6-Di-tert-butylphenol 1 0.792 µg/L 79 50 - 150 3 30 2,6-Di-tert-butylphenol 1 0.729 µg/L 89 53 - 130 1 30 2-Methyl-4,6-dinitrophenol 1 0.732 µg/L	1-Methylphenanthrene	0.5	0.518				104	66 - 127	2	30
2,4,6-Trichlorophenol 1 0.915 µg/L 92 56-118 7 30 2,4-Dichlorophenol 1 0.852 µg/L 85 51-117 1 30 2,4-Dinitrophenol 1 0.56 µg/L 56 0-152 0 30 2,6-Dichlorophenol 1 0.834 µg/L 83 30-130 4 30 2,6-Dimethylnaphthalene 0.5 0.471 µg/L 94 54-117 4 30 2,6-Di-tert-butyl-4-methylphenol 1 0.752 µg/L 75 50-150 4 30 2,6-Di-tert-butylphenol 1 0.792 µg/L 79 50-150 3 30 2-Chlorophenol 1 0.889 µg/L 89 53-130 1 30 2-Methyl-4,6-dinitrophenol 1 0.729 µg/L 73 0-141 9 30 2-Methylnaphthalene 1.5 1.45 µg/L 97 47-130 2 30 2-Methylphenol 1 0.808 µg/L 81 40-117	2,3,5-Trimethylnaphthalene	0.5	0.47		μg/L		94	57 - 120	3	30
2,4-Dichlorophenol 1 0.852 µg/L 85 51-117 1 30 2,4-Dinitrophenol 1 0.56 µg/L 56 0-152 0 30 2,6-Dichlorophenol 1 0.834 µg/L 83 30-130 4 30 2,6-Dimethylnaphthalene 0.5 0.471 µg/L 94 54-117 4 30 2,6-Di-tert-butyl-4-methylphenol 1 0.752 µg/L 75 50-150 4 30 2,6-Di-tert-butylphenol 1 0.79 µg/L 79 50-150 3 30 2,6-Di-tert-butylphenol 1 0.79 µg/L 79 50-150 3 30 2,6-Di-tert-butylphenol 1 0.79 µg/L 89 53-130 1 30 2-Chlorophenol 1 0.889 µg/L 73 41-120 5 30 2-Methyl-4,6-dinitrophenol 1 0.732 µg/L 73 0-141 9 30 2-Methylphenol 1 0.808 µg/L 81 40-117	2,4,5-Trichlorophenol	1	0.883		μg/L		88	57 - 116	1	30
2,4-Dinitrophenol 1 0.56 µg/L 56 0 - 152 0 30 2,6-Dichlorophenol 1 0.834 µg/L 83 30 - 130 4 30 2,6-Dimethylnaphthalene 0.5 0.471 µg/L 94 54 - 117 4 30 2,6-Di-tert-butyl-4-methylphenol 1 0.752 µg/L 75 50 - 150 4 30 2,6-Di-tert-butylphenol 1 0.79 µg/L 79 50 - 150 3 30 2-Chlorophenol 1 0.889 µg/L 89 53 - 130 1 30 2-Methyl-4,6-dinitrophenol 1 0.729 µg/L 73 41 - 120 5 30 2-Methylnaphthalene 1.5 1.45 µg/L 97 47 - 130 2 30 2-Methylphenol 1 0.808 µg/L 81 40 - 117 1 30 2-Methylphenol 1 0.808 µg/L 81 40 - 117 1 30 2-Methylphenol 1 0.808 µg/L 81 40 - 117<	2,4,6-Trichlorophenol	1	0.915		μg/L		92	56 - 118	7	30
2,4-Dinitrophenol 1 0.56 µg/L 56 0 - 152 0 30 2,6-Dichlorophenol 1 0.834 µg/L 83 30 - 130 4 30 2,6-Dimethylnaphthalene 0.5 0.471 µg/L 94 54 - 117 4 30 2,6-Di-tert-butyl-4-methylphenol 1 0.752 µg/L 75 50 - 150 4 30 2,6-Di-tert-butylphenol 1 0.79 µg/L 79 50 - 150 3 30 2-Chlorophenol 1 0.889 µg/L 89 53 - 130 1 30 2-Methyl-4,6-dinitrophenol 1 0.729 µg/L 73 41 - 120 5 30 2-Methylnaphthalene 1.5 1.45 µg/L 97 47 - 130 2 30 2-Methylphenol 1 0.808 µg/L 81 40 - 117 1 30 2-Methylphenol 1 0.808 µg/L 81 40 - 117 1 30 2-Methylphenol 1 0.808 µg/L 81 40 - 117<	2,4-Dichlorophenol	1	0.852		μg/L		85	51 - 117	1	30
2,6-Dimethylnaphthalene 0.5 0.471 µg/L 94 54 - 117 4 30 2,6-Di-tert-butyl-4-methylphenol 1 0.752 µg/L 75 50 - 150 4 30 2,6-Di-tert-butylphenol 1 0.79 µg/L 79 50 - 150 3 30 2-Chloronaphthalene 1 0.889 µg/L 89 53 - 130 1 30 2-Chlorophenol 1 0.729 µg/L 73 41 - 120 5 30 2-Methyl-4,6-dinitrophenol 1 0.732 µg/L 73 0 - 141 9 30 2-Methylphenol 1.5 1.45 µg/L 97 47 - 130 2 30 2-Methylphenol 1 0.808 µg/L 81 40 - 117 1 30 2-Nitroaniline 1 1.05 µg/L 105 69 - 114 9 30 2-Nitrophenol 1 0.559 µg/L 56 40 - 117 0 30	2,4-Dinitrophenol	1	0.56				56	0 - 152	0	30
2,6-Di-tert-butyl-4-methylphenol 1 0.752 μg/L 75 50 - 150 4 30 2,6-Di-tert-butylphenol 1 0.79 μg/L 79 50 - 150 3 30 2-Chloronaphthalene 1 0.889 μg/L 89 53 - 130 1 30 2-Chlorophenol 1 0.729 μg/L 73 41 - 120 5 30 2-Methyl-4,6-dinitrophenol 1 0.732 μg/L 73 0 - 141 9 30 2-Methylnaphthalene 1.5 1.45 μg/L 97 47 - 130 2 30 2-Methylphenol 1 0.808 μg/L 81 40 - 117 1 30 2-Nitroaniline 1 1.05 μg/L 105 69 - 114 9 30 2-Nitrophenol 1 0.559 μg/L 56 40 - 117 0 30	2,6-Dichlorophenol	1	0.834		μg/L		83	30 - 130	4	30
2,6-Di-tert-butylphenol 1 0.79 μg/L 79 50 - 150 3 30 2-Chloronaphthalene 1 0.889 μg/L 89 53 - 130 1 30 2-Chlorophenol 1 0.729 μg/L 73 41 - 120 5 30 2-Methyl-4,6-dinitrophenol 1 0.732 μg/L 73 0 - 141 9 30 2-Methylnaphthalene 1.5 1.45 μg/L 97 47 - 130 2 30 2-Methylphenol 1 0.808 μg/L 81 40 - 117 1 30 2-Nitroaniline 1 1.05 μg/L 105 69 - 114 9 30 2-Nitrophenol 1 0.559 μg/L 56 40 - 117 0 30	2,6-Dimethylnaphthalene	0.5	0.471		μg/L		94	54 - 117	4	30
2-Chloronaphthalene 1 0.889 μg/L 89 53 - 130 1 30 2-Chlorophenol 1 0.729 μg/L 73 41 - 120 5 30 2-Methyl-4,6-dinitrophenol 1 0.732 μg/L 73 0 - 141 9 30 2-Methylnaphthalene 1.5 1.45 μg/L 97 47 - 130 2 30 2-Methylphenol 1 0.808 μg/L 81 40 - 117 1 30 2-Nitroaniline 1 1.05 μg/L 105 69 - 114 9 30 2-Nitrophenol 1 0.559 μg/L 56 40 - 117 0 30	2,6-Di-tert-butyl-4-methylphenol	1	0.752		μg/L		75	50 - 150	4	30
2-Chlorophenol 1 0.729 μg/L 73 41 - 120 5 30 2-Methyl-4,6-dinitrophenol 1 0.732 μg/L 73 0 - 141 9 30 2-Methylnaphthalene 1.5 1.45 μg/L 97 47 - 130 2 30 2-Methylphenol 1 0.808 μg/L 81 40 - 117 1 30 2-Nitroaniline 1 1.05 μg/L 105 69 - 114 9 30 2-Nitrophenol 1 0.559 μg/L 56 40 - 117 0 30	2,6-Di-tert-butylphenol	1	0.79		μg/L		79	50 - 150	3	30
2-Methyl-4,6-dinitrophenol 1 0.732 μg/L 73 0 - 141 9 30 2-Methylnaphthalene 1.5 1.45 μg/L 97 47 - 130 2 30 2-Methylphenol 1 0.808 μg/L 81 40 - 117 1 30 2-Nitroaniline 1 1.05 μg/L 105 69 - 114 9 30 2-Nitrophenol 1 0.559 μg/L 56 40 - 117 0 30	2-Chloronaphthalene	1	0.889		μg/L		89	53 - 130	1	30
2-Methylnaphthalene 1.5 1.45 μg/L 97 47 - 130 2 30 2-Methylphenol 1 0.808 μg/L 81 40 - 117 1 30 2-Nitroaniline 1 1.05 μg/L 105 69 - 114 9 30 2-Nitrophenol 1 0.559 μg/L 56 40 - 117 0 30	2-Chlorophenol	1	0.729		μg/L		73	41 - 120	5	30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Methyl-4,6-dinitrophenol	1	0.732		μg/L		73	0 - 141	9	30
2-Nitroaniline 1 1.05 μg/L 105 69 - 114 9 30 2-Nitrophenol 1 0.559 μg/L 56 40 - 117 0 30	2-Methylnaphthalene	1.5	1.45		μg/L		97	47 - 130	2	30
2-Nitrophenol 1 0.559 µg/L 56 40 - 117 0 30	2-Methylphenol	1	0.808		μg/L		81	40 - 117	1	30
	2-Nitroaniline	1	1.05		μg/L		105	69 - 114	9	30
3+4-Methylphenol 1 0.77 ug/l 77 0.130 4 30	2-Nitrophenol	1	0.559		μg/L		56	40 - 117	0	30
$\frac{1}{1}$ 0.11 $\frac{1}{1}$ 0.11 $\frac{1}{1}$ 0.11	3+4-Methylphenol	1	0.77		μg/L		77	0 - 130	4	30
3-Nitroaniline 1 1.29 $\mu g/L$ 129 23 - 137 11 30	3-Nitroaniline	1	1.29		μg/L		129	23 - 137	11	30

1

1

2

1

1

1.5

1.5

0.5

1.5

1.5

1

1.5

1.5

0.94

0.87

1.01

0.914

2.72

0.98

0.856

1.5

1.53

0.61

1.4

1.38

1.28

1.41

0.0401

µg/L

μg/L

µg/L

µg/L

µg/L

μg/L

µg/L

μg/L

μg/L

μg/L

μg/L

µg/L

µg/L

µg/L

μg/L

Eurofins Eaton Monrovia

Page 16 of 107

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

6

18

2

18

11

5

0

n

O

10/21/2022

Client: City & County of Honolulu

Project/Site: RED-HILL

Method: 625 PAH Physis LL (EAL) + TICs - EPA 625 Base/Neutral and Acid Organics i (Continued)

Lab Sample ID: 98812-BS2 **Client Sample ID: Lab Control Sample Dup Matrix: water Prep Type: Total/NA** Analysis Batch: O-38096 Prep Batch: O-38096_P

	Spike	LCS DUP	LCS DUP				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[e]pyrene	0.5	0.472		μg/L		94	42 - 152	3	30
Benzo[g,h,i]perylene	1.5	1.5		μg/L		100	63 - 133	1	30
Benzo[k]fluoranthene	1.5	1.33		μg/L		89	56 - 145	0	30
Benzoic Acid	1	0.546		μg/L		55	2 - 145	2	30
Benzyl Alcohol	1	0.76		μg/L		76	43 - 148	3	30
Biphenyl	0.5	0.474		μg/L		95	56 - 119	3	30
Bis(2-Chloroethoxy) methane	1	0.884		μg/L		88	66 - 122	2	30
Bis(2-Chloroethyl) ether	1	0.633		μg/L		63	43 - 127	6	30
Bis(2-Chloroisopropyl) ether	1	0.976		μg/L		98	49 - 128	10	30
Chrysene	1.5	1.34		μg/L		89	56 - 141	1	30
Dibenz[a,h]anthracene	1.5	1.4		μg/L		93	55 - 150	2	30
Dibenzo[a,l]pyrene	0.5	0.521		μg/L		104	50 - 150	7	30
Dibenzofuran	1	0.891		μg/L		89	50 - 150	1	30
Dibenzothiophene	0.5	0.441		μg/L		88	75 - 113	2	30
Disalicylidenepropanediamine	50	44.7		μg/L		89	50 - 150	18	30
Fluoranthene	1.5	1.38		μg/L		92	60 - 146	1	30
Fluorene	1.5	1.61		μg/L		107	58 - 131	1	30
Hexachloroethane	1	0.715		μg/L		71	27 - 130	7	30
Indeno[1,2,3-cd]pyrene	1.5	1.42		μg/L		95	50 - 151	2	30
Naphthalene	1.5	1.29		μg/L		86	41 - 126	3	30
Nitrobenzene	1	0.757		μg/L		76	54 - 111	5	30
N-Nitrosodi-n-propylamine	1	0.853		μg/L		85	61 - 152	2	30
N-Nitrosodiphenylamine	1	1.03		μg/L		103	49 - 142	2	30
Pentachlorophenol	1	1.04		μg/L		104	36 - 111	13	30
Perylene	0.5	0.479		μg/L		96	48 - 141	1	30
Phenanthrene	1.5	1.44		μg/L		96	67 - 127	1	30
Phenol	1	0.648		μg/L		65	29 - 114	3	30
p-tert-Butylphenol	1	1.07		μg/L		107	50 - 150	4	30
Pyrene	1.5	1.41		μg/L		94	54 - 156	3	30

	LCS DUP	LCS DUP	
Surrogate	%Recovery	Qualifier	Limits
(2,4,6-Tribromophenol)	80		44 - 159
(d10-Acenaphthene)	97		65 - 113
(d10-Phenanthrene)	98		80 - 111
(d12-Chrysene)	100		60 - 139
(d12-Perylene)	98		36 - 161
(d5-Phenol)	97		20 - 121
(d8-Naphthalene)	84		44 - 119

Method: 8015 Diesel LL (EAL) and Motor Oil - 8015 - TPH DRO/ORO

Lab Sample ID: 22DSH001WB **Client Sample ID: Method Blank Matrix: WATER** Prep Type: Total/NA

Analysis Batch: 22DSH001W

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DIESEL	ND	U	0.025		mg/L			08/02/22 14:45	1
JP5	ND	U	0.05		mg/L			08/02/22 14:45	1
JP8	ND	U	0.05		mg/L			08/02/22 14:45	1
	DIESEL JP5	Analyte Result DIESEL ND JP5 ND	Analyte Result DIESEL Qualifier U JP5 ND U	Analyte Result DIESEL Qualifier U RL 0.025 JP5 ND U 0.05	Analyte Result Qualifier RL MDL DIESEL ND U 0.025 JP5 ND U 0.05	Analyte Result DIESEL Qualifier U 0.025 RL mg/L MDL mg/L JP5 ND U 0.05 mg/L	Analyte Result DIESEL Qualifier U 0.025 RL MDL mg/L mg/L Unit mg/L D mg/L JP5 ND U 0.05 mg/L mg/L	Analyte Result DIESEL Qualifier ND RL Unit mg/L D mg/L JP5 ND U 0.025 mg/L	Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DIESEL ND U 0.025 mg/L 08/02/22 14:45 JP5 ND U 0.05 mg/L 08/02/22 14:45

Eurofins Eaton Monrovia

Page 17 of 107

Client: City & County of Honolulu

Project/Site: RED-HILL

Method: 8015 Diesel LL (EAL) and Motor Oil - 8015 - TPH DRO/ORO (Continued)

Lab Sample ID: 22DSH001WB Client Sample ID: Method Blank

Matrix: WATER

Analysis Batch: 22DSH001W

Prep Type: Total/NA

Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac MOTOR OIL ND U 0.05 mg/L 08/02/22 14:45

MR MR

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac BROMOBENZENE 08/02/22 14:45 **HEXACOSANE**

08/02/22 14:45

Lab Sample ID: 22DSH001WL

Matrix: WATER

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 22DSH001W

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit D %Rec DIESEL 50 - 130 2.5 2.21 mg/L 88

LCS LCS

Limits Surrogate %Recovery Qualifier BROMOBENZENE 80 60 - 130 **HEXACOSANE** 90 60 - 130

Lab Sample ID: 22J5H001WL Client Sample ID: Lab Control Sample

Matrix: WATER

Analysis Batch: 22DSH001W

Prep Type: Total/NA

LCS LCS %Rec Spike Analyte Added Limits Result Qualifier Unit D %Rec JP5 2.5 2.14 86 30 - 160 mg/L

LCS LCS

%Recovery Qualifier Limits Surrogate BROMOBENZENE 60 - 130 92 **HEXACOSANE** 92 60 - 130

Lab Sample ID: 22J8H001WL **Client Sample ID: Lab Control Sample**

Matrix: WATER

JP8

Prep Type: Total/NA Analysis Batch: 22DSH001W Spike LCS LCS %Rec

Added Result Qualifier Unit %Rec Analyte 2.5 1.99 mg/L 30 - 160

LCS LCS

%Recovery Qualifier Surrogate Limits **BROMOBENZENE** 102 60 - 130 **HEXACOSANE** 95 60 - 130

Lab Sample ID: 22G287-01M **Client Sample ID: Matrix Spike** Prep Type: Total/NA

Matrix: WATER

Analysis Batch: 22DSH001W

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added %Rec Limits Result Qualifier Unit DIESEL ND 2.55 85 50 - 130 2.18 mg/L

Eurofins Eaton Monrovia

Client: City & County of Honolulu

Project/Site: RED-HILL

Method: 8015 Diesel LL (EAL) and Motor Oil - 8015 - TPH DRO/ORO (Continued)

Lab Sample ID: 22G287-01M Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: WATER

Analysis Batch: 22DSH001W

MS MS

Surrogate	%Recovery Qualifier	Limits
BROMOBENZENE	73	60 - 130
HEXACOSANE	94	60 - 130

Lab Sample ID: 22G287-01M **Client Sample ID: Matrix Spike Matrix: WATER** Prep Type: Total/NA

Analysis Batch: 22DSH001W

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
JP5	ND		2.65	1.84		mg/L		69	30 - 160

MS MS

Surrogate	%Recovery	Qualifier	Limits
BROMOBENZENE	69		60 - 130
HEXACOSANE	90		60 - 130

Lab Sample ID: 22G287-01S Client Sample ID: Matrix Spike Duplicate **Matrix: WATER Prep Type: Total/NA**

Analysis Batch: 22DSH001W

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
DIESEL	ND		2.65	2.26		mg/L		85	50 - 130	4	30

MSD MSD

Surrogate	%Recovery Qualifier	Limits
BROMOBENZENE	70	60 - 130
HEXACOSANE	95	60 - 130

Lab Sample ID: 22G287-01S Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: WATER

Analysis Batch: 22DSH001W

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
JP5	ND		2.7	2.21		mg/L		82	30 - 160	18	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
BROMOBENZENE	77		60 - 130
HEXACOSANE	9.3		60 - 130

Method: 8015 Ethanol - SW846 8015B Gasoline Range Organics

Lab Sample ID: 22MEG004WB **Client Sample ID: Method Blank Matrix: WATER** Prep Type: Total/NA

Analysis Batch: 22MEG004W

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
ETHANOL	ND	U	2000		ua/L			07/29/22 13:27		

Client: City & County of Honolulu

Project/Site: RED-HILL

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

Client Sample ID: Matrix Spike

Client Sample ID: Method Blank

Analyzed

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prepared

Method: 8015 Ethanol - SW846 8015B Gasoline Range Organics (Continued)

Lab Sample ID: 22MEG004WL **Client Sample ID: Lab Control Sample**

Matrix: WATER

Analysis Batch: 22MEG004W

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec ETHANOL 60 - 130 10000 9670 ug/L 97

Lab Sample ID: 22G287-01M

Matrix: WATER

Analysis Batch: 22MEG004W

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier D %Rec Limits Analyte Unit **ETHANOL** 10000 ND 9490 ug/L 95 60 - 130

Lab Sample ID: 22G287-01S

Matrix: WATER

Analysis Batch: 22MEG004W

Spike MSD MSD %Rec **RPD** Sample Sample Result Qualifier Added Result Qualifier Limits **RPD** Analyte Unit %Rec Limit **ETHANOL** ND 10000 10000 100 60 - 130 30 ug/L

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics

Lab Sample ID: 22VGH7G06B

Matrix: WATER

Analysis Batch: 22VGH7G06

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac **GASOLINE** ND U 0.02 07/28/22 16:40 mg/L

> MB MB %Recovery Qualifier

BROMOFLUOROBENZENE 07/28/22 16:40 Lab Sample ID: 22VGH7G06L **Client Sample ID: Lab Control Sample**

Limits

Matrix: WATER

Surrogate

Analysis Batch: 22VGH7G06

Spike LCS LCS %Rec Added Limits **Analyte** Result Qualifier Unit %Rec **GASOLINE** 0.5 0.46 mg/L 92 60 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits BROMOFLUOROBENZENE 112 70 - 130

Lab Sample ID: 22G287-01M

Matrix: WATER

Analysis Batch: 22VGH7G06

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **GASOLINE** ND 0.5 0.431 86 50 - 130 mg/L

MS MS

Qualifier Limits Surrogate %Recovery BROMOFLUOROBENZENE 113 60 - 140

Eurofins Eaton Monrovia

QC Sample Results

Client: City & County of Honolulu Job ID: 380-12377-1

Project/Site: RED-HILL

Method: 8015 Gas (Purgeable) LL (EAL) - SW846 8015B Gasoline Range Organics (Continued)

Lab Sample ID: 22G287-01S	Client Sample ID: Matrix Spike Duplicate
Matrix: WATER	Prep Type: Total/NA

Analysis Batch: 22VGH7G06

Analysis Datch. 22VGH7G00	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
GASOLINE	ND		0.5	0.401		mg/L		80	50 - 130	7	30
	MSD	MSD									

Surrogate %Recovery Qualifier Limits BROMOFLUOROBENZENE 111 60 - 140

QC Association Summary

Client: City & County of Honolulu

Project/Site: RED-HILL

Job ID: 380-12377-1

Subcontract

Analysis Batch: O-38096

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-12377-1	AIEA GULCH WELLS PUMP 1 (331-201-TP071)	Total/NA	Drinking Water	625 PAH Physis	O-38096_P
				LL (EAL) + TICs	
98812-B1	Method Blank	Total/NA	water	625 PAH Physis	O-38096_P
				LL (EAL) + TICs	
98812-BS1	Lab Control Sample	Total/NA	water	625 PAH Physis	O-38096_P
				LL (EAL) + TICs	
98812-BS2	Lab Control Sample Dup	Total/NA	water	625 PAH Physis	O-38096_P
				LL (EAL) + TICs	

Analysis Batch: 22DSH001W

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-12377-1	AIEA GULCH WELLS PUMP 1 (331-201-TP071)	Total/NA	Drinking Water	8015 Diesel LL (EAL) and Motor	
22DSH001WB	Method Blank	Total/NA	WATER	Oil 8015 Diesel LL (EAL) and Motor	
22DSH001WL	Lab Control Sample	Total/NA	WATER	Oil 8015 Diesel LL (EAL) and Motor Oil	
22J5H001WL	Lab Control Sample	Total/NA	WATER	8015 Diesel LL (EAL) and Motor Oil	
22J8H001WL	Lab Control Sample	Total/NA	WATER	8015 Diesel LL (EAL) and Motor Oil	
22G287-01M	Matrix Spike	Total/NA	WATER	8015 Diesel LL (EAL) and Motor Oil	
22G287-01M	Matrix Spike	Total/NA	WATER	8015 Diesel LL (EAL) and Motor Oil	
22G287-01S	Matrix Spike Duplicate	Total/NA	WATER	8015 Diesel LL (EAL) and Motor Oil	
22G287-01S	Matrix Spike Duplicate	Total/NA	WATER	8015 Diesel LL (EAL) and Motor Oil	

Analysis Batch: 22MEG004W

Lab Sample ID 380-12377-1	Client Sample ID AIEA GULCH WELLS PUMP 1 (331-201-TP071)	Prep Type Total/NA	Matrix Drinking Water	Method 8015 Ethanol	Prep Batch
22MEG004WB	Method Blank	Total/NA	WATER	8015 Ethanol	
22MEG004WL	Lab Control Sample	Total/NA	WATER	8015 Ethanol	
22G287-01M	Matrix Spike	Total/NA	WATER	8015 Ethanol	
22G287-01S	Matrix Spike Duplicate	Total/NA	WATER	8015 Ethanol	

Analysis Batch: 22VGH7G06

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-12377-1	AIEA GULCH WELLS PUMP 1 (331-201-TP071)	Total/NA	Drinking Water	8015 Gas	
				(Purgeable) LL	
				(EAL)	
380-12377-2	TB:AIEA GULCH WELLS P1 (331-201-TP071)	Total/NA	Water	8015 Gas	
				(Purgeable) LL	
				(EAL)	

Eurofins Eaton Monrovia

Page 22 of 107

-

3

7

8

10

12

13

14

QC Association Summary

Client: City & County of Honolulu Job ID:

Project/Site: RED-HILL

Subcontract (Continued)

Analysis Batch: 22VGH7G06 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
22VGH7G06B	Method Blank	Total/NA	WATER	8015 Gas	
				(Purgeable) LL	
				(EAL)	
22VGH7G06L	Lab Control Sample	Total/NA	WATER	8015 Gas	
				(Purgeable) LL	
				(EAL)	
22G287-01M	Matrix Spike	Total/NA	WATER	8015 Gas	
				(Purgeable) LL	
				(EAL)	
22G287-01S	Matrix Spike Duplicate	Total/NA	WATER	8015 Gas	
				(Purgeable) LL	
				(EAL)	

Prep Batch: O-38096_P

Lab Sample ID 380-12377-1	Client Sample ID AIEA GULCH WELLS PUMP 1 (331-201-TP071)	Prep Type Total/NA	Matrix Drinking Water	Method EPA_625	Prep Batch
98812-B1	Method Blank	Total/NA	water	EPA_625	
98812-BS1	Lab Control Sample	Total/NA	water	EPA_625	
98812-BS2	Lab Control Sample Dup	Total/NA	water	EPA_625	

Job ID: 380-12377-1

4

6

8

9

10

11

12

10

-

Lab Chronicle

Client: City & County of Honolulu Job ID: 380-12377-1

Project/Site: RED-HILL

Client Sample ID: AIEA GULCH WELLS PUMP 1

(331-201-TP071)

Date Collected: 07/25/22 09:37 Matrix: Drinking Water

Date Received: 07/27/22 10:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	EPA_625		1	O-38096_P			07/28/22 00:00
Total/NA	Analysis	625 PAH Physis LL (EAL) + TICs		1	O-38096	YC		09/01/22 04:42
Total/NA	Analysis	8015 Diesel LL (EAL) and Motor Oil		1	22DSH001W	SDees		08/02/22 16:55
Total/NA	Analysis	8015 Ethanol		1	22MEG004W	ASitu		07/29/22 14:13
Total/NA	Analysis	8015 Gas (Purgeable) LL (EAL)		1	22VGH7G06	SCerva		07/28/22 18:26

Client Sample ID: TB:AIEA GULCH WELLS P1 (331-201-TP071)

71) Lab Sample ID: 380-12377-2

Lab Sample ID: 380-12377-1

Matrix: Water

Date Collected: 07/25/22 09:37 Date Received: 07/27/22 10:15

Dilution Batch **Batch** Batch **Prepared Prep Type** Type Method Run **Factor Number Analyst** Lab or Analyzed Total/NA Analysis 8015 Gas 1 22VGH7G06 SCerva 07/28/22 20:12 (Purgeable) LL (EAL)

Laboratory References:

= Physis Environmental Laboratories, 1904 Wright Circle, Anaheim, CA 92806

3

4

6

8

10

19

13

14

Method Summary

Client: City & County of Honolulu

Project/Site: RED-HILL

Job ID: 380-12377-1

Method	Method Description	Protocol	Laboratory
625	EPA 625 Base/Neutral and Acid Organics i	EPA	
8015	8015 - Jet Fuel 5 (JP5)	EPA	
8015	8015 - Jet Fuel 8 (JP8)	EPA	
8015	8015 - TPH DRO/ORO	EPA	
8015B	SW846 8015B Gasoline Range Organics	SW846	

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

= Physis Environmental Laboratories, 1904 Wright Circle, Anaheim, CA 92806

2

8

9

11

12

14

Sample Summary

Client: City & County of Honolulu Project/Site: RED-HILL

Job ID: 380-12377-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
380-12377-1	AIEA GULCH WELLS PUMP 1 (331-201-TP071)	Drinking Water	07/25/22 09:37	07/27/22 10:15
380-12377-2	TB:AIEA GULCH WELLS P1 (331-201-TP071)	Water	07/25/22 09:37	07/27/22 10:15

3051 Fujita Street Torrance, CA 90505 Tel: (310)-618-8889

Date: 08-17-2022 EMAX Batch No.: 22G287

Attn: Jackie Contreras

Eurofins Eaton Analytical 750 Royal Oaks Dr., Suite 100 Monrovia, CA 91016-3629

Subject: Laboratory Report

Project: 380-12377

Enclosed is the Laboratory report for samples received on 07/28/22. The data reported relate only to samples listed below:

Sample ID	Control # Col Date	Matrix	Analysis
380-12377-1	G287-01 07/25/22	WATER	TPH GASOLINE TPH
			ETHANOL
380-12377-2	G287-02 07/25/22	WATER	TPH GASOLINE
380-12377-1MS	G287-01M 07/25/22	WATER	TPH GASOLINE TPH DIESEL TPH JP-5
380-12377-1MSD	G287-01s 07/25/22	WATER	TPH GASOLINE TPH DIESEL TPH JP-5

The results are summarized on the following pages.

Please feel free to call if you have any questions concerning these results.

Sincerely yours,

Theman For 9 Caspar & Pang Laboratory Director

This report is confidential and intended solely for the use of the individual or entity to whom it is addressed. This report shall not be reproduced except in full or without the written approval of EMAX.

EMAX certifies that results included in this report meets all TNI & DOD requirements unless noted in the Case Narrative.

NELAP Accredited Certificate Number CA002912022-22 ANAB Accredited DoD ELAP and ISO/IEC 17025 Certificate Number L2278 Testing California ELAP Accredited Certificate Number 2672

Type of Delivery		Airbill / Tracking Number			Recipient DEWK Sholl		
☐ Fedex ☐ UPS ☐ GSO ☐ Others		Α.					
□ EMAX Courier □ Client □	Delivery		-		Date 07/20/22	Time 11:34	
COC INSPECTION							
Client Name	Client PM/FC		☐ Sampler Name	Sampling Date/Time	Sample ID	Matrix	
Address	☐ Tel # / Fax #		☐ Courier Signature	Analysis Required	Preservative (if any)	Z TAT	
Safety Issues (if any)	☐ High concentrations expe	ected	☐ From Superfund Site	Rad screening required	Li Fleservative (II any)	<i>P</i> 1/1/1	
Note:	a riigii concentrations expe	cica	La From Superfulla Site	□ Rad screening required			
11000							
PACKAGING INSPECT							
Container	☐ Cooler		□ Box	□ Other			
Condition	Custody Seal		☐ Intact	☐ Damaged			
Packaging	Bubble Pack		☐ Styrofoam	□ Popcom	☐ Sufficient		
Temperatures	Cooler 1 3.7 "C		oler 2°C	☐ Cooler 3°C	Cooler 4°C	Cooler 5°C	
(Cool, ≤6 °C but not frozen)	Cooler 6°C	☐ Co	oler 7"C	□ Cooler 8°C	Cooler 9"C	☐ Cooler 10°C	
Thermometer:	A-S/N210583479		B - S/N	C-S/N 210271399	D-SIN 210760272		
Comments: Temperature is	out of range. PM was informe	d IMM	EDIATELY.	1			
Note:							
	· · · · · · · · · · · · · · · · · · ·						
DISCREPANCIES							
LabSampleID	LabSampleContainerID	Code	ClientSample La	abel ID / Information	Corrective	Action	
1,2	9-14,15,16	bl			21		
Ž	15,10	107	two dates on is	abel- 7/8/22 and	. R (,	
	15/10	N I	7/25/22	1001 10100	121		
			1/10/20				
- Communication of the Communi		March Co.					
			· · · · · · · · · · · · · · · · · · ·				
			The state of the s				
		Market Market Market					
				1 1			
				1. X/28/12			
☐ pH holding time requirem	nent for water samples is 15 mi	ns. W	ater samples for pH analy	sis are received beyond 15 n	ninutes from sampling time.	M3 8/1/22	
						1 > 0/1/0	
NOTES/OBSERVATION							
SAMPLE MATRIX IS DRINKI	NG WATER? LI YES LI NO						
						, and the state of	
					\$49000 i - 900000 i - 900000 i - 900000 i - 900000 i - 900000000 i - 9000000000 i - 90000000000		
LEGEND:					☐ Continue to next pag	ge.	
Code Description- Sample M			Description-Sample Mana	agement	Code Description-Sample Mana		
(DI) Analysis is not indicated			Out of Holding Time		R1 Proceed as indicated in COO	C □ Label	
Malysis mismatch COC	vs label	Ď14	Bubble is >6mm		R2 Refer to attached instruction		
D3 Sample ID mismatch CC			No trip blank in cooler		R3 Cancel the analysis		
D4 Sample ID is not indicat	ed in		Preservation not indicated i		R4 Use vial with smallest bubble f	first	
D5 Container -[improper] [l	eaking] [broken]		Preservation mismatch CO		R5 Log-in with latest sampling dat	te and time+1 min	
D6 Date/Time is not indicate		D18	Insufficient chemical prese	rvative	R6 Adjust pH as necessary		
(D7) (Date) Time mismatch CO		D19	Insufficient Sample		R7 Filter and preserved as necessa	гу	
D8 Sample listed in COC is		D20	No filtration info for dissol	ved analysis	R8		
D9 Sample received is not li	isted in COC	D21	No sample for moisture determ	nination	R9		
D10 No initial/date on correc	tions in COC/label	D22			R10		
D11 Container count mismate	ch COC vs received	D23			R11		
D12 Container size mismatch		/D24		\bigcirc \downarrow	R12		
REVIEWS:	Joselyne /	/		1/2 -1		NA	
	ing Solls Rama Cley	u	SRF	Clyre)	PM	100	
D	ate 07 20 72 //28/2	2	Date	YPS/N	Date	811166	
				/ /	_	1. 1	
REPORT ID: 220	G287 '' EM	IAX La	boratorie Inc. 305 Et	i405. Torrance, CA 90505	Pag	ge 3 9f,43 _{/2022}	
			age 20 Of			13/21/2022	

REPORTING CONVENTIONS

DATA QUALIFIERS:

Lab Qualifier	AFCEE Qualifier	Description
J	F	Indicates that the analyte is positively identified and the result is less than RL but greater than MDL.
N		Indicates presumptive evidence of a compound.
В	В	Indicates that the analyte is found in the associated method blank as well as in the sample at above QC level.
E	J	Indicates that the result is above the maximum calibration range or estimated value.
*	*	Out of QC limit.

Note: The above qualifiers are used to flag the results unless the project requires a different set of qualification criteria.

ACRONYMS AND ABBREVIATIONS:

CRDL	Contract Required Detection Limit
RL	Reporting Limit
MRL	Method Reporting Limit
PQL	Practical Quantitation Limit
MDL	Method Detection Limit
DO	Diluted out

DATES

The date and time information for leaching and preparation reflect the beginning date and time of the procedure unless the method, protocol, or project specifically requires otherwise.

_

6

8

10

12

LABORATORY REPORT FOR

EUROFINS EATON ANALYTICAL

380-12377

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

SDG#: 22G287

- 3

4

5

6

1

ŏ

10

11

13

14

CASE NARRATIVE

Client : EUROFINS EATON ANALYTICAL

Project: 380-12377

SDG : 22G287

METHOD 5030B/8015B

TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

A total of two(2) water samples were received on 07/28/22 to be analyzed for Total Petroleum Hydrocarbons by Purge and Trap in accordance with Method 5030B/8015B and project specific requirements.

Holding Time

Samples were analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one (1) method blank was analyzed. VGH7G06B - result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of LCS/LCD was analyzed. VGH7G06L/VGH7G06C were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample

Matrix spike sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of MS/MSD was analyzed. Gasoline was within MS QC limits in G287-01M/G287-01S. Refer to Matrix QC summary form for details.

Surrogate

Surrogate was added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis

Samples were analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

LAB CHRONICLE TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Client	: EUROFINS EATON ANALYTICAL	ANALYTICAL							SDG NO.	: 22G287
Project	: 380-12377								Instrume	Instrument ID : H7
				## ## ## ## ## ## ## ## ##						
					WATER	ER				
Client		Laboratory	Dilution	%	Analysis	Extraction	Sample	Calibration Prep.	n Prep.	
Sample ID		Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch	Notes
		1 1 1 1	:	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			t		
MBLK1W		VGH7G06B	ζ-	NA	07/28/2216:40	07/28/2216:40	AG28005A	AG28004A	22VGH7G06	22VGH7G06 Method Blank
LCS1W		VGH7G06L	-	NA	07/28/2217:15	07/28/2217:15	AG28006A	AG28004A	22VGH7G06	22VGH7G06 Lab Control Sample (LCS)
LCD1W		VGH7G06C	-	NA	07/28/2217:51	07/28/2217:51	AG28007A	AG28004A	22VGH7G06	22VGH7G06 LCS Duplicate
380-12377-1	_	G287-01	-	NA	07/28/2218:26	07/28/2218:26	AG28008A	AG28004A	22VGH7G06	22VGH7G06 Field Sample
380-12377-1MS	IMS	G287-01M	-	NA	07/28/2219:02	07/28/2219:02	AG28009A	AG28004A	22VGH7G06	22VGH7G06 Matrix Spike Sample (MS)
380-12377-1MSD	1MSD	G287-01S	-	NA	07/28/2219:37	07/28/2219:37	AG28010A	AG28004A	22VGH7G06	22VGH7GO6 MS Duplicate (MSD)
380-12377-2	٥.	G287-02	-	NA	07/28/2220:12	07/28/2220:12	AG28011A	AG28004A	22VGH7G06	22VGH7G06 Field Sample

REPORT ID: 22G287

SAMPLE RESULTS

2

2

A

5

Ь

8

9

11

12

14

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Client : EUROFINS EATON ANALYTICAL Date Collected: 07/25/22 09:37 Project : 380-12377 Date Received: 07/28/22

Batch No. : 22G287 Date Extracted: 07/28/22 18:26 Sample ID : 380-12377-1 Date Analyzed: 07/28/22 18:26

Lab Samp ID: G287-01 Dilution Factor: 1 Lab File ID: AG28008A Matrix: WATER % Moisture: NA Ext Btch ID: 22VGH7G06 Instrument ID: H7 Calib. Ref.: AG28004A

	RESULTS	RL	MDL	
PARAMETERS	(mg/L)	(mg/L)	(mg/L)	
GASOLINE	ND	0.020	0.010	
CURROCATE DARAMETERS	DECI I	SDV AMT	%DECOVEDY	

SURKUGATE PAKAMETEKS	KESULI	SPK_ANT	WELDAEK I	QC LIMIT
Bromofluorobenzene	0.0365	0.0400	91	60-140

Notes:

Parameter H-C Range Gasoline C6-C10

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Final Volume : 5ml Sample Amount : 5ml Prepared by : SCerva Analyzed by : SCerva

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Client : EUROFINS EATON ANALYTICAL Date Collected: 07/25/22 09:37 Date Received: 07/28/22

Project : 380-12377 Batch No. : 22G287 Date Extracted: 07/28/22 20:12 Sample ID : 380-12377-2 Date Analyzed: 07/28/22 20:12 Lab Samp ID: G287-02 Dilution Factor: 1

Lab File ID: AG28011A Matrix: WATER % Moisture: NA Ext Btch ID: 22VGH7G06 Calib. Ref.: AG28004A Instrument ID: H7

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
GASOLINE	ND	0.020	0.010	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromofluorobenzene	0.0364	0.0400	91	60-140

Notes:

Parameter H-C Range C6-C10 Gasoline

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 5ml Final Volume : 5ml Prepared by : SCerva Analyzed by : SCerva

QC SUMMARIES

METHOD 5030B/8015B TOTAL PETROLEUM HYDROCARBONS BY PURGE AND TRAP

Client : EUROFINS EATON ANALYTICAL Date Collected: 07/28/22 16:40

Date Received: 07/28/22

Project : 380-12377
Batch No. : 22G287
Sample ID : MBLK1W

Date Extracted: 07/28/22 16:40

Lab Samp ID: VGH7G06B

Date Analyzed: 07/28/22 16:40

Lab File ID: AG28005A Ext Btch ID: 22VGH7G06 Dilution Factor: 1 Matrix: WATER % Moisture: NA

Calib. Ref.: AG28004A Instrument ID: H7

	RESULTS	RL	MDL
PARAMETERS	(mg/L)	(mg/L)	(mg/L)
GASOLINE	ND	0.020	0.010

SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromofluorobenzene	0.0360	0.0400	90	60-140

Parameter

H-C Range

Gasoline C6-C10

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 5ml

Final Volume: 5ml

Prepared by

: SCerva

Analyzed by : SCerva

EMAX QUALITY CONTROL DATA LAB CONTROL SAMPLE ANALYSIS

: EUROFINS EATON ANALYTICAL

PROJECT

: 380-12377

BATCH NO. METHOD

: 22G287 : 5030B/8015B

AG28006A

22VGH7G06

AG28004A

07/28/22 17:15

07/28/22 17:15

MATRIX	:	WATE

DILUTION FACTOR: 1 SAMPLE ID : MBLK1W LAB SAMPLE ID : VGH7G06B

LCS1W VGH7G06L

LAB FILE ID : AG28005A DATE PREPARED : 07/28/22 16:40

DATE ANALYZED : 07/28/22 16:40 : 22VGH7G06 CALIBRATION REF: AG28004A

% MOISTURE:NA

LCD1W VGH7G06C AG28007A 07/28/22 17:51

07/28/22 17:51 22VGH7G06 AG28004A

ACCESSION:

PREP BATCH

MBResult SpikeAmt LCSResult LCSRec SpikeAmt LCDResult LCDRec RPD QCLimit MaxRPD (mg/L) (%) (mg/L) (mg/L) (mg/L) (mg/L) (%) (%) (%) (%) 0.500 Gasoline ND 0.500 0.460 92 0.428 86 LCSResult LCSRec SpikeAmt LCDResult LCDRec QCLimit SpikeAmt SURROGATE PARAMETER (mg/L) (mg/L) (%) (mg/L) (mg/L) (%) ----------0.0437 109 70-130 Bromofluorobenzene 0.0400 0.0446 112 0.0400

MB: Method Blank sample LCS: Lab Control Sample LCD: Lab Control Sample Duplicate

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT BATCH NO. : 380-12377 : 22G287

BATCH NO. : 22G287 METHOD : 5030B/8015B

MATRIX : WATER % MOISTURE:NA

DILUTION FACTOR: 1 1

SAMPLE ID : 380-12377-1 LAB SAMPLE ID : G287-01 380-12377-1MS 380-12377-1MSD G287-01M G287-01S LAB FILE ID : AG28008A AG28009A AG28010A DATE PREPARED : 07/28/22 18:26 07/28/22 19:02 07/28/22 19:37 DATE ANALYZED : 07/28/22 18:26 07/28/22 19:02 07/28/22 19:37 PREP BATCH : 22VGH7G06 22VGH7G06 22VGH7G06 CALIBRATION REF: AG28004A AG28004A AG28004A

ACCESSION:

PARAMETERS	PSResult (mg/L)	SpikeAmt (mg/L)	MSResult (mg/L)	MSRec (%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSDRec (%)	RPD (%)	QCLimit (%)	MaxRPD (%)
Gasoline	ND	0.500	0.431	86	0.500	0.401	80	7	50-130	30
		=======		=======						
SURROGATE PARAMETER		SpikeAmt (mg/L)	MSResult (mg/L)	MSRec (%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSDRec (%)		QCLimit (%)	
Bromofluorobenzene		0.0400	0.0450	113	0.0400	0.0442	111		60-140	
	=========	=======		======	========					

PS: Parent Sample MS: Matrix Spike MSD: Matrix Spike Duplicate

3

4

_

_

8

3

. .

12

13

114

LABORATORY REPORT FOR

EUROFINS EATON ANALYTICAL

380-12377

METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

SDG#: 22G287

_

4

5

7

8

3

11

13

14

Client : EUROFINS EATON ANALYTICAL

Project: 380-12377

SDG : 22G287

METHOD 3520C/8015B

TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

One(1) water sample was received on 07/28/22 to be analyzed for Total Petroleum Hydrocarbons by Extraction in accordance with Method 3520C/8015B and project specific requirements.

Holding Time

The sample was analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. DSH001WB - result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of LCS/LCD was analyzed. DSH001WL/DSH001WC were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample

Matrix spike sample was prepared and analyzed at a frequency required by the project. For this SDG, one (1) set of MS/MSD was analyzed. Diesel was within MS QC limits in 22G287-01M/22G287-01S. Refer to Matrix QC summary form for details.

Surrogate

Surrogates were added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis

The sample was analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

Client : EUROFINS EATON ANALYTICAL

Project: 380-12377

SDG : 22G287

METHOD 3520C/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

One(1) water sample was received on 07/28/22 to be analyzed for Petroleum Hydrocarbons by Extraction in accordance with Method 3520C/8015B and project specific requirements.

Holding Time

The sample was analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. DSH001WB - result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of LCS/LCD was analyzed. J5H001WL/J5H001WC were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample

Matrix spike sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of MS/MSD was analyzed. JP5 was within MS QC limits in 22G287-01M/22G287-01S. Refer to Matrix QC summary form for details.

Surrogate

Surrogates were added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis

The sample was analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

Client : EUROFINS EATON ANALYTICAL

Project: 380-12377

SDG : 22G287

METHOD 3520C/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

One(1) water sample was received on 07/28/22 to be analyzed for Petroleum Hydrocarbons by Extraction in accordance with Method 3520C/8015B and project specific requirements.

Holding Time

The sample was analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. DSH001WB - result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of LCS/LCD was analyzed. J8H001WL/J8H001WC were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample

No matrix QC sample was provided on this SDG.

Surrogate

Surrogates were added on QC and field samples. All surrogate recoveries were within QC limits. Refer to sample result summary forms for details.

Sample Analysis

The sample was analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

Client	: EUROFINS EATON ANALYTICAL	ANALYTICAL	
Project	: 380-12377		
Client		Laboratory	Dilution
Sample 1D		Sample 1D	Factor
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1
MBLK1W		DSH001WB	-
LCS1W		DSH001WL	-
LCD1W		DSH001WC	-
380-12377-1		G287-01	-
380-12377-1MS	MS	G287-01M	-
380-12377-1MSD	MSD	G287-01S	-
,	i		

22DSH001W Field Sample 22DSH001W Matrix Spike Sample (MS) 22DSH001W MS Duplicate (MSD)

LH02004A LH02004A LH02004A

LH02017A LH02018A LH02019A

08/01/2210:30 08/01/2210:30 08/01/2210:30

08/02/2216:55 08/02/2217:13 08/02/2217:32

LH02004A

22DSH001W Lab Control Sample (LCS)

LH02004A LH02004A

LH02010A LH02011A LH02012A

08/01/2210:30 08/01/2210:30 08/01/2210:30

08/02/2215:04 08/02/2215:22

08/02/2214:45

Batch

Data FN

Data FN Sample

Extraction DateTime

Analysis DateTime

Moist

WATER

Calibration Prep.

22DSHOO1W LCS Duplicate 22DSH001W Method Blank Notes

: 22G287 : D5

Instrument ID

% Moist - Percent Moisture - Filename

LAB CHRONICLE PETROLEUM HYDROCARBONS BY EXTRACTION

								SDG NO.	: 226287
Project : 3	: 380-12377							Instrument ID : D5	: D5
						H H H H H H H H H H H H H H H H H H H	11 11 12 13 14 14 14 14 14		
				WAT	WATER				
Client	Laboratory	aboratory Dilution	*	Analysis	Extraction	Sample	Calibration Prep.	n Prep.	
Sample ID	Sample ID	Factor	Moist	DateTime	DateTime	Data FN	Data FN	Batch Notes	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1					1 1 1 1 1		
MBLK1W	DSHOO1WB	-	NA	08/02/2214:45	08/01/2210:30	LH02010A	LH02005A	22DSH001W Method Blank	Blank
I CS1W	J5H001WL	,	NA	08/02/2215:41	08/01/2210:30	LH02013A	LH02005A	22DSH001W Lab Co	22DSH001W Lab Control Sample (LCS)
LCD 1W	J5H001WC	-	NA	08/02/2215:59	08/01/2210:30	LH02014A	LH02005A	22DSH001W LCS Duplicate	plicate
380-12377-1	G287-01	-	NA	08/02/2216:55	08/01/2210:30	LH02017A	LH02005A	22DSH001W Field Sample	Sample
380-12377-1MS	G287-01M	τ-	NA	08/02/2217:50	08/01/2210:30	LH02020A	LH02005A	22DSH001W Matrix	22DSHOO1W Matrix Spike Sample (MS)
380-12377-1MSD		1	NA	08/02/2218:09	08/01/2210:30	LH02021A	LH02005A	22DSH001W MS Duplicate (MSD)	licate (MSD)

: 22G287 : D5

Instrument ID SDG NO.

22DSH001W Lab Control Sample (LCS)

22DSH001W Method Blank Notes

> LH02006A LH02006A

> LH02010A LH02015A

Batch

Data FN

Sample Data FN

Extraction DateTime

Analysis DateTime

Moist

Dilution Factor

Laboratory Sample ID

Sample ID

Client

MBLK1W LCS1W

: EUROFINS EATON ANALYTICAL

: 380-12377

Project

Client

WATER

Calibration Prep.

22DSH001W LCS Duplicate 22DSH001W Field Sample

LH02006A LH02006A

LH02016A LH02017A

08/01/2210:30 08/01/2210:30 08/01/2210:30 08/01/2210:30

> 08/02/2216:18 08/02/2216:36 08/02/2216:55

A A A A

J8H001WL J8H001WC G287-01 DSH001WB

LCD1W 380-12377-1

FN - Filename % Moist - Percent Moisture

08/02/2214:45

SAMPLE RESULTS

METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

_____ Client : EUROFINS EATON ANALYTICAL Date Collected: 07/25/22 09:37
Project : 380-12377 Date Received: 07/28/22

Batch No. : 22G287

Sample ID : 380-12377-1

Date Extracted: 08/01/22 10:30

Lab Samp ID: 22G287-01

Date Analyzed: 08/02/22 16:55

Lab File ID: LH02017A

Dilution Factor: 1

Ext Btch ID: 22DSH001W Calib. Ref.: LHO2004A

Matrix: WATER % Moisture: NA Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
Diesel Motor Oil	ND ND	0.027 0.055	0.014 0.027	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene	0.387	0.545	71	60-130

Parameter

H-C Range

Diesel

C10-C24

Motor Oil

c24-c36

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 920ml

Final Volume: 5ml

Prepared by

: POreto

Analyzed by : SDeeso

METHOD 3520C/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

Client : EUROFINS EATON ANALYTICAL Date Collected: 07/25/22 09:37

Project : 380-12377 Batch No. : 22G287 Date Received: 07/28/22

Date Extracted: 08/01/22 10:30 Sample ID : 380-12377-1 Lab Samp ID: 22G287-01 Date Analyzed: 08/02/22 16:55 Dilution Factor: 1

Lab File ID: LHO2017A Matrix: WATER Ext Btch ID: 22DSH001W % Moisture: NA Calib. Ref.: LHO2005A Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
JP5	ND	0.055	0.027	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene Hexacosane	0.387 0.126	0.545 0.136	71 93	60-130 60-130

RL : Reporting Limit Parameter H-C Range C8-C18

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 920ml Final Volume: 5ml

Prepared by : POreto Analyzed by : SDeeso

METHOD 3520C/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

Client : EUROFINS EATON ANALYTICAL Date Collected: 07/25/22 09:37

Project : 380-12377 Batch No. : 22G287 Sample ID : 380-12377-1 Date Received: 07/28/22 Date Extracted: 08/01/22 10:30

Date Analyzed: 08/02/22 16:55 Lab Samp ID: 22G287-01 Dilution Factor: 1

Lab File ID: LH02017A Matrix: WATER % Moisture: NA Ext Btch ID: 22DSH001W Calib. Ref.: LHO2006A Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
JP8	ND	0.055	0.027	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene Hexacosane	0.387 0.126	0.545 0.136	71 93	60-130 60-130

Notes:

: Reporting Limit RL Parameter H-C Range C8-C18

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 920ml Final Volume : 5ml

Analyzed by : SDeeso Prepared by : POreto

Page 25 of 43/2022

QC SUMMARIES

ľ

0

-5

6

R

9

10

12

4 /

METHOD 3520C/8015B TOTAL PETROLEUM HYDROCARBONS BY EXTRACTION

Client : EUROFINS EATON ANALYTICAL Date Collected: 08/01/22 10:30

Project : 380-12377 Batch No. : 22G287 Date Received: 08/01/22 Date Extracted: 08/01/22 10:30 Sample ID : MBLK1W Date Analyzed: 08/02/22 14:45

Lab Samp ID: DSH001WB Dilution Factor: 1 Lab File ID: LH02010A Matrix: WATER % Moisture: NA Ext Btch ID: 22DSH001W Calib. Ref.: LHO2004A Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
Diesel	ND	0.025	0.012	
Motor Oil	ND	0.050	0.025	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene	0.346	0.500	69	60-130
Hexacosane	0.104	0.125	83	60-130

Notes:

Parameter H-C Range Diesel C10-C24 Motor Oil C24-C36

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 1000ml Prepared by : POreto

Final Volume : 5ml

Analyzed by : SDeeso

REPORT ID: 22G287

EMAX QUALITY CONTROL DATA LAB CONTROL SAMPLE ANALYSIS

CLIENT

: EUROFINS EATON ANALYTICAL : 380-12377 : 22G287

PROJECT

BATCH NO. METHOD

: 3520C/8015B

MATRIX : WATER DILUTION FACTOR: 1	1	% MOISTURE:NA 1
SAMPLE ID : MBLK1W	LCS1W	LCD1W
LAB SAMPLE ID : DSH0018	₩B DSHOO1₩L	DSH001WC
LAB FILE ID : LH02010	0A LH02011A	LH02012A
DATE PREPARED : 08/01/2	22 10:30 08/01/22 10:30	08/01/22 10:30
DATE ANALYZED : 08/02/2	22 14:45 08/02/22 15:04	08/02/22 15:22
PREP BATCH : 22DSH0	01W 22DSH001W	22DSH001W
CALIBRATION REF: LH02004	4A LH02004A	LH02004A

ACCESSION:

SpikeAmt SURROGATE PARAMETERS (mg/L)						 	
Bromobenzene 0.500 Hexacosane 0.125	LCSResult LC (mg/L) 	(%) 	SpikeAmt (mg/L) 0.500 0.125	LCDResult (mg/L) 0.426 0.118	LCDRec (%) 85 94	QCLimit (%) 60-130 60-130	

MB: Method Blank sample LCS: Lab Control Sample LCD: Lab Control Sample Duplicate

METHOD 3520C/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

Client : EUROFINS EATON ANALYTICAL Date Collected: 08/01/22 10:30 Project : 380-12377 Date Received: 08/01/22 Batch No. : 22G287 Date Extracted: 08/01/22 10:30

Sample ID : MBLK1W Date Analyzed: 08/02/22 14:45 Dilution Factor: 1 Lab Samp ID: DSH001WB

Matrix: WATER Lab File ID: LH02010A % Moisture: NA Ext Btch ID: 22DSH001W Calib. Ref.: LHO2005A Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)				
JP5	ND	0.050	0.025				
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT			
Bromobenzene Hexacosane	0.346 0.104	0.500 0.125	69 83	60-130 60-130			

Notes:

: Reporting Limit RL Parameter H-C Range JP5 C8-C18

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Page 55 of 107

Sample Amount : 1000ml Final Volume: 5ml

Prepared by : POreto Analyzed by : SDeeso

EMAX QUALITY CONTROL DATA LAB CONTROL SAMPLE ANALYSIS

CLIENT : EUROFINS EATON ANALYTICAL PROJECT : 380-12377 BATCH NO. : 22G287 METHOD : 3520C/8015B

MAIKIX		WAI
DITUITON	FACTOR -	1

% MOISTURE:NA 1

DILUTION FACTOR: 1
SAMPLE ID : MBLK1W
LAB SAMPLE ID : DSH001WB LAB FILE ID : LH02010A
DATE PREPARED : 08/01/22 10:30

LCS1W J5H001WL LH02013A LCD1W J5H001WC LH02014A

DATE ANALYZED : 08/02/22 14:45

08/01/22 10:30 08/02/22 15:41

08/01/22 10:30 08/02/22 15:59 22DSH001W

PREP BATCH : 22DSH001W CALIBRATION REF: LH02005A

22DSH001W LH02005A

LH02005A

ACCESSION:

PARAMETERS	MBResult (mg/L)	SpikeAmt (mg/L)	LCSResult (mg/L)	LCSRec (%)	SpikeAmt (mg/L)	LCDResult (mg/L)	LCDRec (%)	RPD (%)	QCLimit (%)	MaxRPD (%)
JP5	ND	2.50	2.14	86	2.50	2.05	82	4	30-160	30
	AND THE THE RES THE			======	========	=======	=======	======	=========	=======
SURROGATE PARAMETERS		SpikeAmt (mg/L)	LCSResult (mg/L)	LCSRec (%)	SpikeAmt (mg/L)	LCDResult (mg/L)	LCDRec (%)		QCLimit (%)	
Bromobenzene Hexacosane		0.500 0.125	0.458 0.115	92 92	0.500 0.125	0.441 0.114	88 91		60-130 60-130	

MB: Method Blank sample LCS: Lab Control Sample LCD: Lab Control Sample Duplicate

METHOD 3520C/8015B PETROLEUM HYDROCARBONS BY EXTRACTION

Client : EUROFINS EATON ANALYTICAL Date Collected: 08/01/22 10:30

Project : 380-12377 Batch No. : 22G287 Sample ID : MBLK1W Date Received: 08/01/22 Date Extracted: 08/01/22 10:30

Date Analyzed: 08/02/22 14:45 Lab Samp ID: DSH001WB Dilution Factor: 1 Lab File ID: LH02010A Matrix: WATER

% Moisture: NA Ext Btch ID: 22DSH001W Calib. Ref.: LH02006A Instrument ID: D5

PARAMETERS	RESULTS (mg/L)	RL (mg/L)	MDL (mg/L)	
JP8	ND	0.050	0.025	
SURROGATE PARAMETERS	RESULT	SPK_AMT	%RECOVERY	QC LIMIT
Bromobenzene Hexacosane	0.346 0.104	0.500 0.125	69 83	60-130 60-130
		=========		

Notes:

RL : Reporting Limit Parameter H-C Range C8-C18

Reported ND at RL quantitated per pattern recognition.

Detection limits are reported relative to sample result significant figures.

Sample Amount : 1000ml Final Volume: 5ml

Analyzed by : SDeeso Prepared by : POreto

EMAX QUALITY CONTROL DATA LAB CONTROL SAMPLE ANALYSIS

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT

: 380-12377

BATCH NO. : 22G287 METHOD

: 3520C/8015B

MATRIX : WATER DILUTION FACTOR: 1

% MOISTURE:NA

SAMPLE ID : MBLK1W LAB SAMPLE ID : DSHOO1WB

LCD1W

LAB FILE ID : LH02010A

LCS1W J8H001WL LH02015A

1

J8H001WC LH02016A

DATE PREPARED : 08/01/22 10:30

08/01/22 10:30 08/01/22 10:30

PREP BATCH : 22DSH001W

DATE ANALYZED : 08/02/22 14:45

08/02/22 16:18 08/02/22 16:36 22DSH001W

CALIBRATION REF: LH02006A

22DSH001W LH02006A

LH02006A

ACCESSION:

PARAMETERS	MBResult (mg/L)	SpikeAmt (mg/L)	LCSResult (mg/L)	LCSRec (%)	SpikeAmt (mg/L)	LCDResult (mg/L)	LCDRec (%)	RPD (%)	QCLimit (%)	MaxRPD (%)
JP8	ND	2.50	1.99	80	2.50	1.92	77	4	30-160	30
		=======================================		======						
SURROGATE PARAMETERS		SpikeAmt (mg/L)	LCSResult (mg/L)	LCSRec (%)	SpikeAmt (mg/L)	LCDResult (mg/L)	LCDRec (%)		QCLimit (%)	
Bromobenzene Hexacosane		0.500 0.125	0.509 0.119	102 95	0.500 0.125	0.455 0.119	91 95		60-130 60-130	

MB: Method Blank sample LCS: Lab Control Sample LCD: Lab Control Sample Duplicate

REPORT ID: 22G287

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT

: EUROFINS EATON ANALYTICAL

PROJECT

: 380-12377 BATCH NO. : 22G287

METHOD : 3520C/8015B

MATRIX : WATER % MOISTURE:NA DILUTION FACTOR: 1 SAMPLE ID : 380-12377-1 -LAB SAMPLE ID : 22G287-01 380-12377-1MS 380-12377-1MSD 22G287-01M 22G287-01s LAB FILE ID : LH02017A LH02018A LH02019A DATE PREPARED : 08/01/22 10:30 08/01/22 10:30

08/01/22 10:30 DATE ANALYZED : 08/02/22 16:55 08/02/22 17:13 08/02/22 17:32 PREP BATCH : 22DSH001W 22DSH001W 22DSH001W CALIBRATION REF: LH02004A LH02004A LH02004A

ACCESSION:

PARAMETERS	PSResult (mg/L)	SpikeAmt (mg/L)	MSResult (mg/L)	MSRec (%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSDRec (%)	RPD (%)	QCLimit (%)	MaxRPD (%)
Diesel	ND	2.55	2.18	85	2.65	2.26	85	4	50-130	30
	.========	=======	=======		========			=======		
SURROGATE PARAMETERS		SpikeAmt (mg/L)	MSResult (mg/L)	MSRec (%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSDRec (%)		QCLimit (%)	
Bromobenzene Hexacosane		0.510 0.127	0.374 0.120	73 94	0.530 0.132	0.370 0.126	70 95		60-130 60-130	

PS: Parent Sample MS: Matrix Spike MSD: Matrix Spike Duplicate

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT : EUROFINS EATON ANALYTICAL PROJECT : 380-12377
BATCH NO. : 22G287
METHOD : 3520C/8015B

MATRIX :	WATER		% MOISTURE:NA
DILUTION FACTOR:	1	1	1
SAMPLE ID :	380-12377-1	380-12377-1MS	380-12377-1MSD
LAB SAMPLE ID :	22G287-01	22G287-01M	22G287-01s
LAB FILE ID :	LH02017A	LH02020A	LH02021A
DATE PREPARED :	08/01/22 10:30	08/01/22 10:30	08/01/22 10:30
DATE ANALYZED :	08/02/22 16:55	08/02/22 17:50	08/02/22 18:09
PREP BATCH :	22DSH001W	22DSH001W	22DSH001W
CALIBRATION REF:	LH02005A	LH02005A	LH02005A

ACCESSION:

PARAMETERS	PSResult (mg/L)	SpikeAmt (mg/L)	MSResult (mg/L)	MSRec (%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSDRec (%)	RPD (%)	QCLimit (%)	MaxRPD (%)
JP5	ND	2.65	1.84	69	2.70	2.21	82	18	30-160	30
	=========				========					
SURROGATE PARAMETERS		SpikeAmt (mg/L)	MSResult (mg/L)	MSRec (%)	SpikeAmt (mg/L)	MSDResult (mg/L)	MSDRec (%)		QCLimit (%)	
Bromobenzene Hexacosane		0.530 0.132	0. 36 5 0.119	69 90	0.540 0.135	0.414 0.126	77 93		60-130 60-130	

PS: Parent Sample MS: Matrix Spike MSD: Matrix Spike Duplicate

REPORT ID: 22G287

Page 34 of 43/2022

LABORATORY REPORT FOR

EUROFINS EATON ANALYTICAL

380-12377

METHOD SW8015C ALCOHOLS BY GC

SDG#: 22G287

REPORT ID: 22G287

Client : EUROFINS EATON ANALYTICAL

Project: 380-12377

SDG : 22G287

> METHOD SW8015C ALCOHOLS BY GC

One (1) water sample was received on 07/28/22 to be analyzed for Alcohols by GC in accordance with Method SW8015C and project specific requirements.

The sample was analyzed within the prescribed holding time.

Calibration

Multi-calibration points were generated to establish initial calibration (ICAL). ICAL was verified using a secondary source (ICV). Continuing calibration (CCV) verifications were carried out on a frequency specified by the project. All calibration requirements were within acceptance criteria. Refer to calibration summary forms of ICAL, ICV and CCV for details. MRL was analyzed as required by the project. Refer to MRL summary form for details.

Method Blank

Method blank was prepared and analyzed at the frequency required by the project. For this SDG, one(1) method blank was analyzed. MEG004WB - result was compliant to project requirement. Refer to sample result summary form for details.

Lab Control Sample

Lab control sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of LCS/LCD was analyzed. MEG004WL/MEG004WC were within LCS limits. Refer to LCS summary form for details.

Matrix QC Sample

Matrix spike sample was prepared and analyzed at a frequency required by the project. For this SDG, one(1) set of MS/MSD was analyzed. Ethanol was within MS QC limits in G287-01M/G287-01S. Refer to Matrix QC summary form for details.

Sample Analysis

The sample was analyzed according to prescribed analytical procedures. Results were evaluated in accordance to project requirements. For this SDG, all quality control requirements were met.

Field Sample Matrix Spike Sample (MS)

MEG004W MEG004W MEG004W

TG29002A TG29002A TG29002A TG29002A TG29002A TG29002A

TG29007A TG29008A TG29009A

07/29/2214:13 07/29/2214:26 07/29/2214:40 07/29/2213:58 07/29/2213:27 07/29/2213:45

MEG004WC G287-01 G287-01M G287-01S

> 380-12377-1 380-12377-1MS 380-12377-1MSD

MEG004WB MEG004WL

TG29005A TG29006A

TG29004A

MS Duplicate (MSD)

Lab Control Sample (LCS)

Notes

Calibration Prep. Data FN Batch

Sample Data FN

Extraction Datelime

Analysis DateTime

Moist

Dilution Factor

Laboratory Sample ID

Sample ID

Client

MBLK1W

LCS1W LCD1W

: EUROFINS EATON ANALYTICAL : 380-12377

Project

Client

WATER

MEG004W MEG004W MEG004W

LCS Duplicate Method Blank

Instrument ID SDG NO.

: 226287 : GCT050

10/21/2022

Page	63	of	107

FN - Filename % Moist - Percent Moisture

SAMPLE RESULTS

Δ

4 /

METHOD SW8015C ALCOHOLS BY GC

Client : EUROFINS EATON ANALYTICAL Date Collected: 07/25/22

Project : 380-12377 Batch No. : 22G287 Sample ID: 380-12377-1 Date Received: 07/28/22

Date Extracted: NA
Date Analyzed: 07/29/22 14:13 Dilution Factor: 1 Lab Samp ID: G287-01

Matrix : WATER % Moisture : NA Instrument ID : GCT050 Lab File ID: TG29007A Ext Btch ID: MEG004W Calib. Ref.: TG29002A

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
ETHANOL	ND	2000	500

RL: Reporting Limit

QC SUMMARIES

2

0

5

6

R

9

11

12

10

ь

METHOD SW8015C ALCOHOLS BY GC

	==:

Client	: EUROFINS EATON ANALYTICAL	Date	Collected: NA
Project	: 380-12377	Date	Received: NA
Batch No.	: 22G287	Date	Extracted: NA

Sample ID: MBLK1W Date Analyzed: 07/29/22 13:27 Lab Samp ID: MEG004WB Dilution Factor: 1

Lab Samp ID: MEGUU4WB

Lab File ID: TG29004A

Ext Btch ID: MEG004W

Calib. Ref.: TG29002A

Matrix: WATER

% Moisture: NA

Instrument ID: GCT050

	RESULTS	RL	MDL
PARAMETERS	(ug/L)	(ug/L)	(ug/L)
ETHANOL	ND	2000	500

RL : Reporting Limit

_

3

4

5

6

_

. _

10

11

13

14

EMAX QUALITY CONTROL DATA LCS/LCD ANALYSIS

CLIENT:

EUROFINS EATON ANALYTICAL

PROJECT:

380-12377

BATCH NO.:

22G287

METHOD:

METHOD SW8015C

MATRIX: DILUTION FACTOR: 1

WATER

% MOISTURE:

DATE COLLECTED:

DATE RECEIVED:

NA

NA

SAMPLE ID: LAB SAMP ID: MBLK1W MEG004WB

MEG004WL

MEG004WC TG29006A

LAB FILE ID: DATE EXTRACTED:

TG29004A NA

TG29005A NA

NA

07/29/2213:45 07/29/2213:27

07/29/2213:58

MEG004W

DATE ANALYZED: PREP. BATCH: CALIB. REF:

TG29002A

MEG004W

MEG004W TG29002A

TG29002A

ACCESSION:

BLNK RSLT SPIKE AMT BS RSLT SPIKE AMT BSD RSLT BSD RPD QC LIMIT MAX RPD PARAMETER (ug/L) % REC % REC (%) (%) (%) (ug/L) (ug/L) (ug/L) (ug/L) Ethanol ND 10000 9670 97 10000 9450 94 2 60-130 30

EMAX QUALITY CONTROL DATA MS/MSD ANALYSIS

CLIENT:

EUROFINS EATON ANALYTICAL

PROJECT:

380-12377

BATCH NO.:

22G287

METHOD:

METHOD SW8015C

MATRIX: DILUTION FACTOR: 1

DATE EXTRACTED:

DATE ANALYZED:

PREP. BATCH:

CALIB. REF:

WATER

NA

1

% MOISTURE:

NA

DATE COLLECTED: 07/25/22

DATE RECEIVED: 07/28/22

SAMPLE ID: 380-12377-1 LAB SAMP ID: G287-01

TG29007A LAB FILE ID:

07/29/2214:13

MEG004W

TG29002A

G287-01M TG29008A G287-01S TG29009A

NA

MEG004W

TG29002A

NA

07/29/2214:26 07/29/2214:40

MEG004W TG29002A

ACCESSION:

SMPL RSLT SPIKE AMT MS RSLT MS SPIKE AMT MSD RSLT RPD QC LIMIT MAX RPD MSD PARAMETER (ug/L) (ug/L) (ug/L) % REC (ug/L) (ug/L) (%) (%) (%) Ethanol 10000 9490 95 10000 10000 100 60-130

Innovative Solutions for Nature

September 08, 2022

Debbie Frank **Eurofins Eaton Analytical** 750 Royal Oaks Drive Suite 100 Monrovia, CA 91016-

Project Name: RED-HILL Project # 38001111 Job # 380-12377-1

Physis Project ID: 1407003-258

Dear Debbie,

Enclosed are the analytical results for the sample submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 7/28/2022. A total of 1 sample was received for analysis in accordance with the attached chain of custody (COC). Per the COC, the sample was analyzed for:

Organics		
Polynuclear Aromatic Hydrocarbons by EPA 625.1		
Disalicylidenepropanediamine by EPA 625.1		
Dibenzo [a,l] Pyrene w/ PAHs by EPA 625.1		
Base/Neutral Extractable Compounds by EPA 625.1		
Acid Extractable Compounds w/ PAHs by EPA 625.1		
6-tert-Butyl-2,4-dimethylphenol by EPA 625.1		
2,6-Di-tert-butylphenol by EPA 625.1		
2,6-Di-tert-butyl-4-methylphenol by EPA 625.1		
p-tert-Butylphenol by EPA 625.1		

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards, Worldwa-

Misty Mercier 714 602-5320 Extension 202 mistymercier@physislabs.com

Innovative Solutions for Nature

PROJECT SAMPLE LIST

Eurofins Eaton Analytical

RED-HILL Project # 38001111 Job # 380-12377-1

PHYSIS Project ID: 1407003-258

Total Samples: 1

PHYSIS ID	Sample ID	Description	Date	Time	Matrix	Sample Type
98813	AIEA GULCH WELLS PUMP 331-201-TP071 (380-12377-1)		7/25/2022	9:37	Samplewater	Not Specified

6

Ω

3

11

13

14

Innovative Solutions for Nature

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS ₂	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

8

10

12

11

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

i - 4 of 6

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

i - 6 of 6

CASE NARRATIVE

QUALIFIER NOTES

In addition to the use of analyte specific Physis Qualifier Codes where applicable, the following were also noted.

ND

MDL is listed due to report format restrictions; it is not used in reporting. Analytical results reported are ND at the RL.

<u>ی</u>

<u>ر</u>

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

Acid Extractable Compounds

ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 98813-R1	AIEA GULCH WELLS PU	JMP 1 331-20 M	atrix: Sampl	ewater			Sampled:	25-Jul-22	9:37	Received:	28-Jul-22
(2,4,6-Tribromophenol)	EPA 625.1	% Recovery	59	1			Total		0-38096	28-Jul-22	01-Sep-22
(d5-Phenol)	EPA 625.1	% Recovery	43	1			Total		0-38096	28-Jul-22	01-Sep-22
2,4,5-Trichlorophenol	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
2,4,6-Trichlorophenol	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
2,4-Dichlorophenol	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
2,4-Dinitrophenol	EPA 625.1	μg/L	ND	1	0.1	0.2	Total		0-38096	28-Jul-22	01-Sep-22
2,6-Dichlorophenol	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
2,6-Di-tert-butyl-4-methylpheno	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
2,6-Di-tert-butylphenol	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
2-Chlorophenol	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
2-Methyl-4,6-dinitrophenol	EPA 625.1	μg/L	ND	1	0.1	0.2	Total		0-38096	28-Jul-22	01-Sep-22
2-Methylphenol	EPA 625.1	μg/L	ND	1	0.1	0.2	Total		0-38096	28-Jul-22	01-Sep-22
2-Nitrophenol	EPA 625.1	μg/L	ND	1	0.1	0.2	Total		0-38096	28-Jul-22	01-Sep-22
3+4-Methylphenol	EPA 625.1	μg/L	ND	1	0.1	0.2	Total		0-38096	28-Jul-22	01-Sep-22
4-Chloro-3-methylphenol	EPA 625.1	μg/L	ND	1	0.1	0.2	Total		0-38096	28-Jul-22	01-Sep-22
4-Nitrophenol	EPA 625.1	μg/L	ND	1	0.1	0.2	Total		0-38096	28-Jul-22	01-Sep-22
6-tert-butyl-2,4-dimethylphenol	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
Benzoic Acid	EPA 625.1	μg/L	ND	1	0.1	0.2	Total		0-38096	28-Jul-22	01-Sep-22
Benzyl Alcohol	EPA 625.1	μg/L	ND	1	0.1	0.2	Total		0-38096	28-Jul-22	01-Sep-22
Pentachlorophenol	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
Phenol	EPA 625.1	μg/L	ND	1	0.1	0.2	Total		0-38096	28-Jul-22	01-Sep-22
p-tert-Butylphenol	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

ar - 1 of 4

Page 78 of 107 10/21/2022

2

3

6

9

11

13

4

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

Base/Neutral Extractable Compounds

		-									
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE	Batch ID	Date Processed	Date Analyzed
Sample ID: 98813-R1	AIEA GULCH WELLS PU	JMP 1 331-20	Matrix: Sampl	ewate			Sampled:	25-Jul-22	9:37	Received:	28-Jul-22
2-Chloronaphthalene	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
2-Nitroaniline	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
3-Nitroaniline	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
4-Bromophenylphenyl ether	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
4-Chloroaniline	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		O-38096	28-Jul-22	01-Sep-22
4-Chlorophenylphenyl ether	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		O-38096	28-Jul-22	01-Sep-22
4-Nitroaniline	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
Aniline	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		O-38096	28-Jul-22	01-Sep-22
Benzidine	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
Bis(2-Chloroethoxy) methane	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		O-38096	28-Jul-22	01-Sep-22
Bis(2-Chloroethyl) ether	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
Bis(2-Chloroisopropyl) ether	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
D benzofuran	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
Disalicylidenepropanediamine	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
Hexachloroethane	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
Nitrobenzene	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		O-38096	28-Jul-22	01-Sep-22
N-Nitrosodi-n-propylamine	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22
N-Nitrosodiphenylamine	EPA 625.1	μg/L	ND	1	0.05	0.1	Total		0-38096	28-Jul-22	01-Sep-22

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 ar - 2 of 4

Page 79 of 107 10/21/2022

3

5

0

6

9

. .

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

Polynuclear Aromatic Hydrocarbons

ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Batch	ID Date Processed	Date Analyzed
Sample ID: 98813-R1	AIEA GULCH WELLS PL	JMP 1 331-20 M	atrix: Sampl	ewateı	r		Sampled:	25-Jul-22 9:37	Received:	28-Jul-22
(d10-Acenaphthene)	EPA 625.1	% Recovery	55	1			Total	O-380	96 28-Jul-22	01-Sep-22
(d10-Phenanthrene)	EPA 625.1	% Recovery	59	1			Total	O-380	96 28-Jul-22	01-Sep-22
(d12-Chrysene)	EPA 625.1	% Recovery	71	1			Total	0-380	96 28-Jul-22	01-Sep-22
(d12-Perylene)	EPA 625.1	% Recovery	66	1			Total	O-380	96 28-Jul-22	01-Sep-22
(d8-Naphthalene)	EPA 625.1	% Recovery	49	1			Total	O-380	96 28-Jul-22	01-Sep-22
1-Methylnaphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-380	96 28-Jul-22	01-Sep-22
1-Methylphenanthrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-380	96 28-Jul-22	01-Sep-22
2,3,5-Trimethylnaphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-380	96 28-Jul-22	01-Sep-22
2,6-Dimethylnaphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-380	96 28-Jul-22	01-Sep-22
2-Methylnaphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-380	96 28-Jul-22	01-Sep-22
Acenaphthene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-380	96 28-Jul-22	01-Sep-22
Acenaphthylene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-380	96 28-Jul-22	01-Sep-22
Anthracene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-380	96 28-Jul-22	01-Sep-22
Benz[a]anthracene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-380	96 28-Jul-22	01-Sep-22
Benzo[a]pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-380	96 28-Jul-22	01-Sep-22
Benzo[b]fluoranthene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-380	96 28-Jul-22	01-Sep-22
Benzo[e]pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-380	96 28-Jul-22	01-Sep-22
Benzo[g,h,i]perylene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-380	96 28-Jul-22	01-Sep-22
Benzo[k]fluoranthene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-380	96 28-Jul-22	01-Sep-22
Biphenyl	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-380	96 28-Jul-22	01-Sep-22
Chrysene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-380	96 28-Jul-22	01-Sep-22
D benz[a,h]anthracene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-380	96 28-Jul-22	01-Sep-22
D benzo[a,l]pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-380	96 28-Jul-22	01-Sep-22
D benzothiophene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	O-380	96 28-Jul-22	01-Sep-22

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

ar - 3 of 4

5

6

4.0

11

13

14

Page 80 of 107 10/21/2022

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

Polynuclear Aromatic Hydrocarbons														
ANALYTE	Method	Units	RESULT	DF	MDL	RL	Fraction	QA CODE Batch ID	Date Processed	Date Analyzed				
Fluoranthene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-38096	28-Jul-22	01-Sep-22				
Fluorene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-38096	28-Jul-22	01-Sep-22				
Indeno[1,2,3-cd]pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-38096	28-Jul-22	01-Sep-22				
Naphthalene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-38096	28-Jul-22	01-Sep-22				
Perylene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-38096	28-Jul-22	01-Sep-22				
Phenanthrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-38096	28-Jul-22	01-Sep-22				
Pyrene	EPA 625.1	μg/L	ND	1	0.001	0.005	Total	0-38096	28-Jul-22	01-Sep-22				

Δ

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

Acid Extractable Compounds

QUALITY CONTROL REPORT

ANALYTE	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE SOURCE	ACCURACY	PRECISION	QA CODEc
							LEVEL RESULT	% LIMITS	% LIMITS	

Sample ID: 98812-B	31 Q	AQC Procedura	al Blank			Matrix: Bla	nkMatrix	Sampled:		Received:
	М	ethod: EPA 625.1				Batch ID: O-38	8096	Prepared: 2	8-Jul-22	Analyzed: 31-Aug-22
(2,4,6-Tribromophenol)	Total	80	1			% Recovery	100	80	44 - 159% PASS	
(d5-Phenol)	Total	102	1			% Recovery	100	102	20 - 121% PASS	
2,4,5-Trichlorophenol	Total	ND	1	0.05	0.1	μg/L				
2,4,6-Trichlorophenol	Total	ND	1	0.05	0.1	μg/L				
2,4-Dichlorophenol	Total	ND	1	0.05	0.1	μg/L				
2,4-Dinitrophenol	Total	ND	1	0.1	0.2	μg/L				
2,6-Dichlorophenol	Total	ND	1	0.05	0.1	μg/L				
2,6-Di-tert-butyl-4-methylphe	Total	ND	1	0.05	0.1	μg/L				
2,6-Di-tert-butylphenol	Total	ND	1	0.05	0.1	μg/L				
2-Chlorophenol	Total	ND	1	0.05	0.1	μg/L				
2-Methyl-4,6-dinitrophenol	Total	ND	1	0.1	0.2	μg/L				
2-Methylphenol	Total	ND	1	0.1	0.2	μg/L				
2-Nitrophenol	Total	ND	1	0.1	0.2	μg/L				
3+4-Methylphenol	Total	ND	1	0.1	0.2	μg/L				
4-Chloro-3-methylphenol	Total	ND	1	0.1	0.2	μg/L				
4-Nitrophenol	Total	ND	1	0.1	0.2	μg/L				
6-tert-butyl-2,4-dimethylphen	Total	ND	1	0.05	0.1	μg/L				
Benzoic Acid	Total	ND	1	0.1	0.2	μg/L				
Benzyl Alcohol	Total	ND	1	0.1	0.2	μg/L				
Pentachlorophenol	Total	ND	1	0.05	0.1	μg/L				
Phenol	Total	ND	1	0.1	0.2	μg/L				
p-tert-Butylphenol	Total	ND	1	0.05	0.1	μg/L				

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qcb - 1 of 12

Page 83 of 107 10/21/2022

PHYSIS Project ID: 1407003-258 Client: Eurofins Eaton Analytical

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Acid Extractable Compounds

QUALITY CONTROL REPORT

Γ	Sample ID: 9881	2-BS1 QAC	QC Procedural Bl	ank		Matrix:	BlankMatrix	Sample	ed:	Received:	
							LEVEL RI	ESULT	% LIMITS	% LIMITS	
	ANALYTE	FRACTION	KESULI DI	- MDL	KL	UNITS	SPIKE SO	JUKCE	ACCURACY	PRECISION	QA CODEC

Sample ID: 98812-B	3S1 (QAQC Procedura	l Blank			Matrix: Bla	nkMatrix	Sa	mpled:		Received:
		Method: EPA 625.1				Batch ID: O-38	3096	F	repared: 2	8-Jul-22	Analyzed: 01-Sep-22
(2,4,6-Tribromophenol)	Total	79	1			% Recovery	100	0	79	44 - 159%	PASS
(d5-Phenol)	Total	104	1			% Recovery	100	0	104	20 - 121%	PASS
2,4,5-Trichlorophenol	Total	0.871	1	0.05	0.1	μg/L	1	0	87	57 - 116%	PASS
2,4,6-Trichlorophenol	Total	0.86	1	0.05	0.1	μg/L	1	0	86	56 - 118%	PASS
2,4-Dichlorophenol	Total	0.84	1	0.05	0.1	μg/L	1	0	84	51 - 117%	PASS
2,4-Dinitrophenol	Total	0.561	1	0.1	0.2	μg/L	1	0	56	0 - 152%	PASS
2,6-Dichlorophenol	Total	0.855	1	0.05	0.1	μg/L	1	0	86	30 - 130%	PASS
2,6-Di-tert-butyl-4-methylphe	Total	0.725	1	0.05	0.1	μg/L	1	0	73	50 - 150%	PASS
2,6-Di-tert-butylphenol	Total	0.773	1	0.05	0.1	μg/L	1	0	77	50 - 150%	PASS
2-Chlorophenol	Total	0.77	1	0.05	0.1	μg/L	1	0	77	41 - 110%	PASS
2-Methyl-4,6-dinitrophenol	Total	0.666	1	0.1	0.2	μg/L	1	0	67	0 - 141%	PASS
2-Methylphenol	Total	0.82	1	0.1	0.2	μg/L	1	0	82	40 - 117%	PASS
2-Nitrophenol	Total	0.558	1	0.1	0.2	μg/L	1	0	56	40 - 117%	PASS
3+4-Methylphenol	Total	0.8	1	0.1	0.2	μg/L	1	0	80	0 - 130%	PASS
4-Chloro-3-methylphenol	Total	0.824	1	0.1	0.2	μg/L	1	0	82	51 - 128%	PASS
4-Nitrophenol	Total	0.885	1	0.1	0.2	μg/L	1	0	88	10 - 164%	PASS
6-tert-butyl-2,4-dimethylphen	Total	0.815	1	0.05	0.1	μg/L	1	0	81	50 - 150%	PASS
Benzoic Acid	Total	0.541	1	0.1	0.2	μg/L	1	0	54	2 - 145%	PASS
Benzyl Alcohol	Total	0.784	1	0.1	0.2	μg/L	1	0	78	43 - 148%	PASS
Pentachlorophenol	Total	0.908	1	0.05	0.1	μg/L	1	0	91	36 - 111%	PASS
Phenol	Total	0.674	1	0.1	0.2	μg/L	1	0	67	29 - 114%	PASS
p-tert-Butylphenol	Total	1.03	1	0.05	0.1	μg/L	1	0	103	50 - 150%	PASS

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qcb - 2 of 12

Page 84 of 107 10/21/2022

2

3

4

5

6

1

ŏ

10

PHYSIS Project ID: 1407003-258 Client: Eurofins Eaton Analytical

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Acid Extractable Compounds

QUALITY CONTROL REPORT

ANALYTE	FRACTION	KESULI	DF	MDL	KL	UNITS	SPIKE SOU	UKCE	ACCURACY	PKI	CISION	QA CODEC	
							LEVEL RES	SULT %	LIMITS	%	LIMITS		

													LIIVIIIIS
Sample ID: 98812-B	SS2	QAQC Procedur	al Blan	k		Matrix: Bla	nkMatrix	Sa	mpled:				Received:
		Method: EPA 625.1				Batch ID: O-38	3096	Р	repared: 2	8-Jul-22			Analyzed: 01-Sep-22
(2,4,6-Tribromophenol)	Total	80	1			% Recovery	100	0	80	44 - 159%	PASS	1	30 PASS
(d5-Phenol)	Total	97	1			% Recovery	100	0	97	20 - 121%	PASS	7	30 PASS
2,4,5-Trichlorophenol	Total	0.883	1	0.05	0.1	μg/L	1	0	88	57 - 116%	PASS	1	30 PASS
2,4,6-Trichlorophenol	Total	0.915	1	0.05	0.1	μg/L	1	0	92	56 - 118%	PASS	7	30 PASS
2,4-Dichlorophenol	Total	0.852	1	0.05	0.1	μg/L	1	0	85	51 - 117%	PASS	1	30 PASS
2,4-Dinitrophenol	Total	0.56	1	0.1	0.2	μg/L	1	0	56	0 - 152%	PASS	0	30 PASS
2,6-Dichlorophenol	Total	0.834	1	0.05	0.1	μg/L	1	0	83	30 - 130%	PASS	4	30 PASS
2,6-Di-tert-butyl-4-methylphe	Total	0.752	1	0.05	0.1	μg/L	1	0	75	50 - 150%	PASS	4	30 PASS
2,6-Di-tert-butylphenol	Total	0.79	1	0.05	0.1	μg/L	1	0	79	50 - 150%	PASS	3	30 PASS
2-Chlorophenol	Total	0.729	1	0.05	0.1	μg/L	1	0	73	41 - 110%	PASS	5	30 PASS
2-Methyl-4,6-dinitrophenol	Total	0.732	1	0.1	0.2	μg/L	1	0	73	0 - 141%	PASS	9	30 PASS
2-Methylphenol	Total	0.808	1	0.1	0.2	μg/L	1	0	81	40 - 117%	PASS	1	30 PASS
2-Nitrophenol	Total	0.559	1	0.1	0.2	μg/L	1	0	56	40 - 117%	PASS	0	30 PASS
3+4-Methylphenol	Total	0.77	1	0.1	0.2	μg/L	1	0	77	0 - 130%	PASS	4	30 PASS
4-Chloro-3-methylphenol	Total	0.87	1	0.1	0.2	μg/L	1	0	87	51 - 128%	PASS	6	30 PASS
4-Nitrophenol	Total	0.98	1	0.1	0.2	μg/L	1	0	98	10 - 164%	PASS	11	30 PASS
6-tert-butyl-2,4-dimethylphen	Total	0.856	1	0.05	0.1	μg/L	1	0	86	50 - 150%	PASS	5	30 PASS
Benzoic Acid	Total	0.546	1	0.1	0.2	μg/L	1	0	55	2 - 145%	PASS	2	30 PASS
Benzyl Alcohol	Total	0.76	1	0.1	0.2	μg/L	1	0	76	43 - 148%	PASS	3	30 PASS
Pentachlorophenol	Total	1.04	1	0.05	0.1	μg/L	1	0	104	36 - 111%	PASS	13	30 PASS
Phenol	Total	0.648	1	0.1	0.2	μg/L	1	0	65	29 - 114%	PASS	3	30 PASS
p-tert-Butylphenol	Total	1.07	1	0.05	0.1	μg/L	1	0	107	50 - 150%	PASS	4	30 PASS

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qcb - 3 of 12

Page 85 of 107 10/21/2022

2

3

4

5

6

0

9

11

13

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

1904 E. Wright Circle, Anaheim CA 92806

Base/Neutral Extractable Compounds

main: (714) 602-5320

QUALITY CONTROL REPORT

ANALYTE	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE SOURCE	ACCURACY	PRECISION	QA CODEc
							LEVEL RESULT	% LIMITS	% LIMITS	

Sample ID: 98812-B	1 Q/	AQC Proced	dural Blank			Matrix: BlankMatrix	Sampled:	Received:
	M	ethod: EPA 62	25.1			Batch ID: O-38096	Prepared: 28-Jul-22	Analyzed: 31-Aug-22
2-Chloronaphthalene	Total	ND	1	0.05	0.1	μg/L		
2-Nitroaniline	Total	ND	1	0.05	0.1	μg/L		
3-Nitroaniline	Total	ND	1	0.05	0.1	μg/L		
4-Bromophenylphenyl ether	Total	ND	1	0.05	0.1	μg/L		
4-Chloroaniline	Total	ND	1	0.05	0.1	μg/L		
4-Chlorophenylphenyl ether	Total	ND	1	0.05	0.1	μg/L		
4-Nitroaniline	Total	ND	1	0.05	0.1	μg/L		
Aniline	Total	ND	1	0.05	0.1	μg/L		
Benzidine	Total	ND	1	0.05	0.1	μg/L		
Bis(2-Chloroethoxy) methane	Total	ND	1	0.05	0.1	μg/L		
Bis(2-Chloroethyl) ether	Total	ND	1	0.05	0.1	μg/L		
Bis(2-Chloroisopropyl) ether	Total	ND	1	0.05	0.1	μg/L		
Dibenzofuran	Total	ND	1	0.05	0.1	μg/L		
Disalicylidenepropanediamin	Total	ND	1	0.05	0.1	μg/L		
Hexachloroethane	Total	ND	1	0.05	0.1	μg/L		
Nitrobenzene	Total	ND	1	0.05	0.1	μg/L		
N-Nitrosodi-n-propylamine	Total	ND	1	0.05	0.1	μg/L		
N-Nitrosodiphenylamine	Total	ND	1	0.05	0.1	μg/L		

Page 86 of 107 10/21/2022

www.physislabs.com

info@physislabs.com

CA ELAP #2769

qcb - 4 of 12

fax: (714) 602-5321

2

3

4

5

6

- [

_

10

12

4 4

4 -

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Total

Total

0.869

1.01

0.05

0.05

0.1

0.1

μg/L

μg/L

Base/Neutral Extractable Compounds

QUALITY CONTROL REPORT

ANALYTE	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE	Α	CCURACY	Р	RECISION	QA CODEc
							LEVEL	RESULT	%	LIMITS	%	LIMITS	
Sample ID: 98812	-BS1 QAC	QC Procedur	al Blar	nk		Matrix: I	BlankMatr	ix Sa	mpled:			Received:	
	Meth	nod: EPA 625.1				Batch ID: (0-38096	P	repared: 2	8-Jul-22		Analyzed: o	o1-Sep-22
2-Chloronaphthalene	Total	0.88	1	0.05	0.1	μg/L	1	0	88	53 - 130% PASS			
2-Nitroaniline	Total	0.963	1	0.05	0.1	μg/L	1	0	96	69 - 114% PASS			
3-Nitroaniline	Total	1.16	1	0.05	0.1	μg/L	1	0	116	23 - 137% PASS			
4-Bromophenylphenyl ether	Total	0.922	1	0.05	0.1	μg/L	1	0	92	61 - 132% PASS			
4-Chloroaniline	Total	0.839	1	0.05	0.1	μg/L	1	0	84	50 - 150% PASS			
4-Chlorophenylphenyl ether	Total	0.93	1	0.05	0.1	μg/L	1	0	93	63 - 130% PASS			
4-Nitroaniline	Total	2.29	1	0.05	0.1	μg/L	2	0	114	10 - 159% PASS			
Aniline	Total	0.531	1	0.05	0.1	μg/L	0.5	0	106	50 - 150% PASS			
Benzidine	Total	0.0367	1	0.05	0.1	μg/L	1	0	4	0 - 125% PASS			
Bis(2-Chloroethoxy) methane	Total	0.903	1	0.05	0.1	μg/L	1	0	90	66 - 122% PASS			
Bis(2-Chloroethyl) ether	Total	0.667	1	0.05	0.1	μg/L	1	0	67	43 - 127% PASS			
Bis(2-Chloroisopropyl) ether	Total	1.08	1	0.05	0.1	μg/L	1	0	108	49 - 128% PASS			
Dibenzofuran	Total	0.899	1	0.05	0.1	μg/L	1	0	90	50 - 150% PASS			
Disalicylidenepropanediamin	Total	36.8	1	0.05	0.1	μg/L	50	0	74	50 - 150% PASS			
Hexachloroethane	Total	0.772	1	0.05	0.1	μg/L	1	0	77	27 - 130% PASS			
Nitrobenzene	Total	0.8	1	0.05	0.1	μg/L	1	0	80	54 - 111% PASS			

0

101

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769 qcb - 5 of 12

> Page 87 of 107 10/21/2022

61 - 152% PASS

49 - 142% PASS

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

N-Nitrosodiphenylamine

1904 E. Wright Circle, Anaheim CA 92806

Total

1.03

main: (714) 602-5320

0.05

0.1

fax: (714) 602-5321

μg/L

0

www.physislabs.com

Base/Neutral Extractable Compounds

QUALITY CONTROL REPORT

ANALYTE	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE	Α	CCURACY	PR	ECISION	QA CODEc
							LEVEL	RESULT	%	LIMITS	%	LIMITS	
Sample ID: 98812	-BS2 QA	QC Procedura	al Blar	nk		Matrix:	BlankMatı	rix Sa	ampled:			Received:	
	Met	hod: EPA 625.1				Batch ID:	0-38096	1	Prepared: 2	8-Jul-22		Analyzed: o	-Sep-22
2-Chloronaphthalene	Total	0.889	1	0.05	0.1	μg/L	1	0	89	53 - 130% PASS	1	30 PASS	
2-Nitroaniline	Total	1.05	1	0.05	0.1	μg/L	1	0	105	69 - 114% PASS	9	30 PASS	
3-Nitroaniline	Total	1.29	1	0.05	0.1	μg/L	1	0	129	23 - 137% PASS	11	30 PASS	
4-Bromophenylphenyl ether	Total	0.94	1	0.05	0.1	μg/L	1	0	94	61 - 132% PASS	2	30 PASS	
4-Chloroaniline	Total	1.01	1	0.05	0.1	μg/L	1	0	101	50 - 150% PASS	18	30 PASS	
4-Chlorophenylphenyl ether	Total	0.914	1	0.05	0.1	μg/L	1	0	91	63 - 130% PASS	2	30 PASS	
4-Nitroaniline	Total	2.72	1	0.05	0.1	μg/L	2	0	136	10 - 159% PASS	18	30 PASS	
Aniline	Total	0.61	1	0.05	0.1	μg/L	0.5	0	122	50 - 150% PASS	14	30 PASS	
Benzidine	Total	0.0401	1	0.05	0.1	μg/L	1	0	4	0 - 125% PASS	0	30 PASS	
Bis(2-Chloroethoxy) methane	Total	0.884	1	0.05	0.1	μg/L	1	0	88	66 - 122% PASS	2	30 PASS	
Bis(2-Chloroethyl) ether	Total	0.633	1	0.05	0.1	μg/L	1	0	63	43 - 127% PASS	6	30 PASS	
Bis(2-Chloroisopropyl) ether	Total	0.976	1	0.05	0.1	μg/L	1	0	98	49 - 128% PASS	10	30 PASS	
Dibenzofuran	Total	0.891	1	0.05	0.1	μg/L	1	0	89	50 - 150% PASS	1	30 PASS	
Disalicylidenepropanediamin	Total	44.7	1	0.05	0.1	μg/L	50	0	89	50 - 150% PASS	18	30 PASS	
Hexachloroethane	Total	0.715	1	0.05	0.1	μg/L	1	0	71	27 - 130% PASS	7	30 PASS	
Nitrobenzene	Total	0.757	1	0.05	0.1	μg/L	1	0	76	54 - 111% PASS	5	30 PASS	
N-Nitrosodi-n-propylamine	Total	0.853	1	0.05	0.1	μg/L	1	0	85	61 - 152% PASS	2	30 PASS	

qcb - 6 of 12

Page 88 of 107 10/21/2022

info@physislabs.com

49 - 142% PASS

30 PASS

CA ELAP #2769

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Polynuclear Aromatic Hydrocarbons

QUALITY CONTROL REPORT

ANALYTE FRACTION RESULT DF MDL RL UNITS SPIKE SOURCE ACCURACY PRECISION QA CODEC LEVEL RESULT % LIMITS % LIMITS

							LEVEL K	LJULI	76	LIMITS		% LIMITS
Sample ID: 98812-B	1	QAQC Procedu	ıral Blank			Matrix: Bla	nkMatrix	Samp	led:			Received:
		Method: EPA 625.	.1			Batch ID: O-38	3096	Prepa	red: 2	8-Jul-22		Analyzed: 31-Aug-22
(d10-Acenaphthene)	Total	93	1			% Recovery	100		93	65 - 113%		
(d10-Phenanthrene)	Total	93	1			% Recovery	100		93	80 - 111%	PASS	
(d12-Chrysene)	Total	98	1			% Recovery	100		98	60 - 139%	PASS	
(d12-Perylene)	Total	90	1			% Recovery	100		90	36 - 161%	PASS	
(d8-Naphthalene)	Total	86	1			% Recovery	100		86	44 - 119%	PASS	
1-Methylnaphthalene	Total	ND	1	0.001	0.005	μg/L						
1-Methylphenanthrene	Total	ND	1	0.001	0.005	μg/L						
2,3,5-Trimethylnaphthalene	Total	ND	1	0.001	0.005	μg/L						
2,6-Dimethylnaphthalene	Total	ND	1	0.001	0.005	μg/L						
2-Methylnaphthalene	Total	ND	1	0.001	0.005	μg/L						
Acenaphthene	Total	ND	1	0.001	0.005	μg/L						
Acenaphthylene	Total	ND	1	0.001	0.005	μg/L						
Anthracene	Total	ND	1	0.001	0.005	μg/L						
Benz[a]anthracene	Total	ND	1	0.001	0.005	μg/L						
Benzo[a]pyrene	Total	ND	1	0.001	0.005	μg/L						
Benzo[b]fluoranthene	Total	ND	1	0.001	0.005	μg/L						
Benzo[e]pyrene	Total	ND	1	0.001	0.005	μg/L						
Benzo[g,h,i]perylene	Total	ND	1	0.001	0.005	μg/L						
Benzo[k]fluoranthene	Total	ND	1	0.001	0.005	μg/L						
Biphenyl	Total	ND	1	0.001	0.005	μg/L						
Chrysene	Total	ND	1	0.001	0.005	μg/L						
Dibenz[a,h]anthracene	Total	ND	1	0.001	0.005	μg/L						
Dibenzo[a,l]pyrene	Total	ND	1	0.001	0.005	μg/L						

1904 E. Wright Circle, Anaheim CA 92806 main: (714) 602-5320 fax: (714) 602-5321 www.physislabs.com info@physislabs.com CA ELAP #2769

Page 89 of 107 10/21/2022

2

3

_

7

8

10

11

13

14

qcb - 7 of 12

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

Pol	ynuclear	Aroma	atic	Hydr	ocar	bons		Q	UA	LITY CON	NTROL	REPO	RT
ANALYTE	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE LEVEL		%	ACCURACY LIMITS	PR	ECISION LIMITS	QA CODEc
Dibenzothiophene	Total	ND	1	0.001	0.005	μg/L							
Fluoranthene	Total	ND	1	0.001	0.005	μg/L							
Fluorene	Total	ND	1	0.001	0.005	μg/L							
Indeno[1,2,3-cd]pyrene	Total	ND	1	0.001	0.005	μg/L							
Naphthalene	Total	ND	1	0.001	0.005	μg/L							
Perylene	Total	ND	1	0.001	0.005	μg/L							
Phenanthrene	Total	ND	1	0.001	0.005	μg/L							
Pyrene	Total	ND	1	0.001	0.005	μg/L							

qcb - 8 of 12

Page 90 of 107 10/21/2022

CA ELAP #2769

info@physislabs.com

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

Polynuclear Aromatic Hydrocarbons

QUALITY CONTROL REPORT

ANALYTE	FRACTIO	N RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE	А	CCURACY		PRECISION	QA CODEc
							LEVEL	RESULT	%	LIMITS	,	% LIMITS	
Sample ID: 9881	2-BS1 (QAQC Procedura	al Blan	nk		Matrix: Bla	ank Mati	rix Sa	mpled:			Received:	
		Method: EPA 625.1				Batch ID: O-3	-		repared: 2			Analyzed: o	1-Sep-22
(d10-Acenaphthene)	Total	98	1			% Recovery	100	0	98	65 - 113% PA			
(d10-Phenanthrene)	Total	97	1			% Recovery	100	0	97	80 - 111% PA			
(d12-Chrysene)	Total	105	1			% Recovery	100	0	105	60 - 139% PA	SS		
(d12-Perylene)	Total	99	1			% Recovery	100	0	99	36 - 161% PA	SS		
(d8-Naphthalene)	Total	87	1			% Recovery	100	0	87	44 - 119% PA	SS		
1-Methylnaphthalene	Total	0.439	1	0.001	0.005	μg/L	0.5	0	88	49 - 117% PA	SS		
1-Methylphenanthrene	Total	0.512	1	0.001	0.005	μg/L	0.5	0	102	66 - 127% PA	SS		
2,3,5-Trimethylnaphthalene	Total	0.456	1	0.001	0.005	μg/L	0.5	0	91	57 - 120% PA	SS		
2,6-Dimethylnaphthalene	Total	0.45	1	0.001	0.005	μg/L	0.5	0	90	54 - 117% PA	SS		
2-Methylnaphthalene	Total	1.43	1	0.001	0.005	μg/L	1.5	0	95	47 - 130% PA	SS		
Acenaphthene	Total	1.5	1	0.001	0.005	μg/L	1.5	0	100	53 - 131% PA	SS		
Acenaphthylene	Total	1.53	1	0.001	0.005	μg/L	1.5	0	102	43 - 140% PA	SS		
Anthracene	Total	1.4	1	0.001	0.005	μg/L	1.5	0	93	58 - 135% PA	SS		
Benz[a]anthracene	Total	1.4	1	0.001	0.005	μg/L	1.5	0	93	55 - 145% PA	SS		
Benzo[a]pyrene	Total	1.31	1	0.001	0.005	μg/L	1.5	0	87	51 - 143% PA	SS		
Benzo[b]fluoranthene	Total	1.42	1	0.001	0.005	μg/L	1.5	0	95	46 - 165% PA	SS		
Benzo[e]pyrene	Total	0.486	1	0.001	0.005	μg/L	0.5	0	97	42 - 152% PA	SS		
Benzo[g,h,i]perylene	Total	1.51	1	0.001	0.005	μg/L	1.5	0	101	63 - 133% PA	SS		
Benzo[k]fluoranthene	Total	1.34	1	0.001	0.005	μg/L	1.5	0	89	56 - 145% PA	SS		
Biphenyl	Total	0.459	1	0.001	0.005	μg/L	0.5	0	92	56 - 119% PA	ASS		
Chrysene	Total	1.35	1	0.001	0.005	μg/L	1.5	0	90	56 - 141% PA	SS		
Dibenz[a,h]anthracene	Total	1.42	1	0.001	0.005	μg/L	1.5	0	95	55 - 150% PA	SS		
Dibenzo[a,l]pyrene	Total	0.485	1	0.001	0.005	μg/L	0.5	0	97	50 - 150% PA	SS		

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

qcb - 9 of 12

Page 91 of 107 10/21/2022

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

Po	lynuclear <i>i</i>	Aroma	itic	Hydr	ocar	bons		Q	UAL	ITY CO	NTF	ROL	REPO	RT
ANALYTE	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE	Α	CCURACY		PR	ECISION	QA CODEc
							LEVEL	RESULT	%	LIMITS		%	LIMITS	
Dibenzothiophene	Total	0.43	1	0.001	0.005	μg/L	0.5	0	86	75 - 113% F	PASS			
Fluoranthene	Total	1.37	1	0.001	0.005	μg/L	1.5	0	91	60 - 146% F	PASS			
Fluorene	Total	1.59	1	0.001	0.005	μg/L	1.5	0	106	58 - 131% F	PASS			
Indeno[1,2,3-cd]pyrene	Total	1.39	1	0.001	0.005	μg/L	1.5	0	93	50 - 151% F	PASS			
Naphthalene	Total	1.33	1	0.001	0.005	μg/L	1.5	0	89	41 - 126% F	PASS			
Perylene	Total	0.477	1	0.001	0.005	μg/L	0.5	0	95	48 - 141% F	PASS			
Phenanthrene	Total	1.43	1	0.001	0.005	μg/L	1.5	0	95	67 - 127% F	PASS			
Pyrene	Total	1.37	1	0.001	0.005	μg/L	1.5	0	91	54 - 156% F	PASS			

3

D

7

8

10

11

1 4

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

Polynuclear Aromatic Hydrocarbons

QUALITY CONTROL REPORT

	Sample ID: 9881	2-BS2 QA	QC Procedura	al Blan	k		Matrix: E	3 lank Matr	rix Sa	mpled:		ı	Received:	
								LEVEL	RESULT	%	LIMITS	%	LIMITS	
ANA	ALYTE	FRACTION	RESULT	DF	MDL	RL	UNITS	SPIKE	SOURCE	F	ACCURACY	PRI	ECISION	QA CODEc

									,,,			,,,	Elivilis
Sample ID: 98812-I	BS2	QAQC Procedur	al Blank			Matrix: Bla	nkMatrix	Sa	mpled:				Received:
		Method: EPA 625.1				Batch ID: O-38	8096	Р	repared: 2	8-Jul-22			Analyzed: 01-Sep-22
(d10-Acenaphthene)	Total	97	1			% Recovery	100	0	97	65 - 113%	PASS	1	30 PASS
(d10-Phenanthrene)	Total	98	1			% Recovery	100	0	98	80 - 111%	PASS	1	30 PASS
(d12-Chrysene)	Total	100	1			% Recovery	100	0	100	60 - 139%	PASS	5	30 PASS
(d12-Perylene)	Total	98	1			% Recovery	100	0	98	36 - 161%	PASS	1	30 PASS
(d8-Naphthalene)	Total	84	1			% Recovery	100	0	84	44 - 119%	PASS	4	30 PASS
1-Methylnaphthalene	Total	0.454	1	0.001	0.005	μg/L	0.5	0	91	49 - 117%	PASS	3	30 PASS
1-Methylphenanthrene	Total	0.518	1	0.001	0.005	μg/L	0.5	0	104	66 - 127%	PASS	2	30 PASS
2,3,5-Trimethylnaphthalene	Total	0.47	1	0.001	0.005	μg/L	0.5	0	94	57 - 120%	PASS	3	30 PASS
2,6-Dimethylnaphthalene	Total	0.471	1	0.001	0.005	μg/L	0.5	0	94	54 - 117%	PASS	4	30 PASS
2-Methylnaphthalene	Total	1.45	1	0.001	0.005	μg/L	1.5	0	97	47 - 130%	PASS	2	30 PASS
Acenaphthene	Total	1.5	1	0.001	0.005	μg/L	1.5	0	100	53 - 131%	PASS	0	30 PASS
Acenaphthylene	Total	1.53	1	0.001	0.005	μg/L	1.5	0	102	43 - 140%	PASS	0	30 PASS
Anthracene	Total	1.4	1	0.001	0.005	μg/L	1.5	0	93	58 - 135%	PASS	0	30 PASS
Benz[a]anthracene	Total	1.38	1	0.001	0.005	μg/L	1.5	0	92	55 - 145%	PASS	1	30 PASS
Benzo[a]pyrene	Total	1.28	1	0.001	0.005	μg/L	1.5	0	85	51 - 143%	PASS	2	30 PASS
Benzo[b]fluoranthene	Total	1.41	1	0.001	0.005	μg/L	1.5	0	94	46 - 165%	PASS	1	30 PASS
Benzo[e]pyrene	Total	0.472	1	0.001	0.005	μg/L	0.5	0	94	42 - 152%	PASS	3	30 PASS
Benzo[g,h,i]perylene	Total	1.5	1	0.001	0.005	μg/L	1.5	0	100	63 - 133%	PASS	1	30 PASS
Benzo[k]fluoranthene	Total	1.33	1	0.001	0.005	μg/L	1.5	0	89	56 - 145%	PASS	0	30 PASS
Biphenyl	Total	0.474	1	0.001	0.005	μg/L	0.5	0	95	56 - 119%	PASS	3	30 PASS
Chrysene	Total	1.34	1	0.001	0.005	μg/L	1.5	0	89	56 - 141%	PASS	1	30 PASS
Dibenz[a,h]anthracene	Total	1.4	1	0.001	0.005	μg/L	1.5	0	93	55 - 150%	PASS	2	30 PASS
Dibenzo[a,l]pyrene	Total	0.521	1	0.001	0.005	μg/L	0.5	0	104	50 - 150%	PASS	7	30 PASS

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

qcb - 11 of 12

Page 93 of 107 10/21/2022

_

Л

5

6

8

4.0

13

Project: RED-HILL Project # 38001111 Job # 380-12377-1

Innovative Solutions for Nature

ANALYTE FRACTION RESULT DF MDL RL UNITS SPIKE SOURCE LEVEL RESULT ACCURACY PRECISION QA COE Limits "Limits "Limits
Dibenzothiophene Total 0.441 1 0.001 0.005 μg/L 0.5 0 88 75 - 113% PASS 2 30 PASS Fluoranthene Total 1.38 1 0.001 0.005 μg/L 1.5 0 92 60 - 146% PASS 1 30 PASS Fluorene Total 1.61 1 0.001 0.005 μg/L 1.5 0 107 58 - 131% PASS 1 30 PASS Indeno[1,2,3-cd]pyrene Total 1.42 1 0.001 0.005 μg/L 1.5 0 95 50 - 151% PASS 2 30 PASS
Fluoranthene Total 1.38 1 0.001 0.005 μg/L 1.5 0 92 60 - 146% PASS 1 30 PASS Fluorene Total 1.61 1 0.001 0.005 μg/L 1.5 0 107 58 - 131% PASS 1 30 PASS Indeno[1,2,3-cd]pyrene Total 1.42 1 0.001 0.005 μg/L 1.5 0 95 50 - 151% PASS 2 30 PASS
Fluorene Total 1.61 1 0.001 0.005 μg/L 1.5 0 107 58 - 131% PASS 1 30 PASS Indeno[1,2,3-cd]pyrene Total 1.42 1 0.001 0.005 μg/L 1.5 0 95 50 - 151% PASS 2 30 PASS
Indeno[1,2,3-cd]pyrene Total 1.42 1 0.001 0.005 μg/L 1.5 0 95 50 - 151% PASS 2 30 PASS
10
Naphthalene Total 1.29 1 0.001 0.005 μg/L 1.5 0 86 41 - 126% PASS 3 30 PASS
Perylene Total 0.479 ₁ 0.001 0.005 μg/L 0.5 0 96 48 - 141% PASS 1 30 PASS
Phenanthrene Total 1.44 1 0.001 0.005 μg/L 1.5 0 96 67 - 127% PASS 1 30 PASS
Pyrene Total 1.41 1 0.001 0.005 μg/L 1.5 0 94 54 - 156% PASS 3 30 PASS

10/21/2022

Page 95 of 107 10/21/2022

Sample ID: 98813

		Concentration			
RT	Area Pct	(ng/L)	Library/ID	Cas Number	Match Qual
32.5309	7.9934	1111	Anthracene-D10	1517-22-2	96
43.0609	1.4249	198	Terephthalic acid, isobutyl butyl ester	1000323-56-2	94
14.9095	0.7657	106	Cyclohexane, 1,2,4,5-tetraethyl-, (1.alpha.,2.alpha.,4.alpha.,5.alpha.)-	61142-24-3	85
12.6185	0.7553	105	Cyclohexane, (1,2-dimethylbutyl)-	61142-37-8	92
11.7803	0.7198	100	Octane, 4,5-diethyl-	1636-41-5	96

Concentration estimated using the response for Anthracene-d10

Sample ID: Lab Blank Batch O-38096

		Concentration			
RT	Area Pct	(ng/L)	Library/ID	Cas Number	Match Qual
32.5340	7.3408	1111	Anthracene-D10-	1517-22-2	97
			No Compounds Met The Search Criteria		

Concentration estimated using the response for Anthracene-d10

6

4

A

Ę

6

0

10

11

12

Address: 1904 Wright Circle,

Due Date Requested: 8/10/2022

Physis Environmental Laboratories

Client Information (Sub Contract Lab)
Client Contact:
Shipping/Receiving

Phone: Sampler:

Lab PM: Frank, Debbie L E-Maik Debbie.Frank@et.aurolinsus.com

State of Origin: Hawaii

COC No: 380-14605.1 Page: Page 1 of 1

Job #: 380-12377-1

Accreditations Required (See note): State - Hawaii

Analysis Requested

Monrovia, CA (Suite 100)

750 Royal Oaks Drive Suite 100 Monrovia, CA 91016 Phone: 626-386-1100

Chain of Custody Record

eurofins Environment Testing Preservation Codes: M - Hexane N - None 10/21/2022

Contract of	O I OU FOLK				minaryona menuangu		M - LIRVOIR
City: Anaheim	TAT Requested (days):	days):			se	B - NaOH N	N - None O - AsNaO2
State, Zp: CA, 92806					525 Ba		P - Na2O4S Q - Na2SO3
Phone:	PO #:				Acid		S - H2SO4
Email:	WO#:				(6) is)/ 62 AL) Ph	I - Ice	U - Acetone V - MCAA
Project Name: RED-HILL	Project #: 38001111			1	LL (EA	L-EDA	w - pH 4-5 Y - Trizma Z - other (specify)
Site: Honolulu BWS Sites	:#WOSS				SD (Y L (EAI Neutral) Phys Physis	Other:	
		Sample	Sample Type (C=comp.	(W=watet, S=solid, O=wasteioN, BT=Tissue	Id Filtered form MSA 8 (625 Acid I rsis 3 (625 Base thral LL (EAL 8 (625 PAH F rsis LL (EAL	al Number	
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	a=grab) a=air)	Si Pi Si Ne	Special Instructions/Note:	ctions/Note:
AIEA GULCH WELLS PUMP 1 (331-201-TP071) (380-12377-1)	7/25/22	09:37		Water	× × ×	B See Attached Instructions	ons
Note: Since faboratory accreditations are subject to change, Euroffns Eaton Analytical, LLC places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory of currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Euroffns Eaton Analytical, LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Euroffns Eaton Analytical, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attention to Euroffns Eaton Analytical, LLC.	alytical, LLC places th sts/matrix being analy tations are current to	e ownership of zed, the sampl date, return the	method, analy les must be sh signed Chain	te & accreditati		ontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought Eurofins Eaton Analytical, LLC.	laberatory does not us should be brought
Possible Hazard Identification Unconfirmed					Sample Disposal (A fee may be assessed if sam. Return To Client Disposal By Lab	ples ar e retained longer than 1 mo	nth) Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	able Rank:	2		Special Instructions/QC Requirements:		
Empty Kit Relinquished by:		Date:			Time:	Method of Shipment:	
Relinquished by: XM	HX/2	the same	53	Company	Received by A	Date/Time: 22/22 12:50 Com	Company
Rollinguished by: C	bate/Time:			Company	Received by:		npalry
Relinquished by:	Date/Time:			Company	Received by:	Date/Time: Com	Company
Custody Seals Intact: Custody Seal No.:					Cooler Temperature(s) "C and Other Remarks:	F-F-CONTRIBUTION OF THE CONTRIBUTION OF THE CO	

Sample Receipt Summary

Receiving Info

PHYSIS
ENV RONMENTAL LABORATORIES, INC.

Project Iteration ID: 1407003-258

Client Name: Eurofins Eaton Analytical

Project Name: RED-HII

RED-HILL Project #38001111

Job # 380-12377-1

COC Page Number: 2 of 2

Bottle Label Color: NA

	Initials Received B	v: 175			
2.	Date Received:				
3.	Time Received:				
4.	Client Name:		'		
5.	Courier Information				
	Client	UPS		Area Fast	• DRS
	• FedEx	 GSO/GLS 		Ontrac	PAMS
	 PHYSIS Driver: 	The state of the s			- I AIVIS
	i. Start T	ime:		iii. Total M	lileage:
		me:			r of Pickups:
6.		tion: (Please put the # of cor			or rendps.
•		Styrofoam Cooler		Boxes	• None
4		Carboy Trash Can(si			Other
7.		vas used: (Please circle any th			other
	Wet Ice	Blue Ice	Dry Ice	Water	None
8.		Samples Temperature (°C):	The second second	Used I/R Thermo	
1. 2. 3. 4. 5. 6. 7.	All sample contained All samples listed of Information on corr Correct containers All samples receive	eipt: Id completely filled out ers arrived intact on COC(s) are present ntainers consistent with informand volume for all analyses and within method holding times used for all analyses indicates.	rmation on (indicated	COC(s)	/ No / No / No / No / No / No / No
8.	Name of sampler in	ncluded on COC(s)		Yes	/ (RO)
			Notes:		
			Notes:		

eurofins |

CHAIN OF CUSTODY RECORD

	E	aton Analytical	EUROFINS EAT	ON ANALYTIC	CAL USI	ONLY:													
			LOGIN COMM									SAMP	LES C	HECK	ED A	GAINS	ST C	OC BY:	6R
750 Royal O Monrovia, C														SAM	PLE	s LOG	GED	IN BY:	
Phone: 626			SAMPLE TEMP									SA	MPLES	REC'D	DAY	OF CO	OLLE	CTION?	(check for ye
Fax: 626 386				California /	Arizona	7	3 °C	(Con	npliand	e: 4 ±	2 °C)								
800 566 LAE	3S (800 566	5227)	Monrovia							_									
	(,		OF BLUE					1										
			METHOD	OF SHIPME	ENT: PI	ck-Up / V	/alk-In	FedE	X UF	5 /	DHL /	Area Fa	ist / Id	op Line	. / (other: _			
BE COMPLETE	ED BY SAMPLE	R:											k for ye						eck for yes)
MPANY/AGE	NCY NAME:		PROJECT C	ODE:				С				PLES	_					E SAMPLES	SX_
IONOLULU	J BOARD (OF WATER SUPP	LY	RED HI	ILL		Type	of sam				forms ROUTIN						DLVED:	e V, NPDES, FDA,
A CLIENT CO	DE:	COC ID:	SAMPLE GF	ROUP:														X (check for	
				3Q202	22		lis	t ANAL	YSES	REQ	UIRED	(enter i	numbei	of bo	ttles	sent f	for ea	ach test for	each sample
T requested:			STD_X_ 1 wk _	3 day 2	2 day	1 day											Т		
ш ш			1		:	ATA ATA	1 =				3								AMPLER
SAMPLE	SA	MPLE ID	CLIENT LA	B ID	MATRIX	IELD DATA	Red F											CO	MMENTS
-	iea Gulch f	Pump 1	HI000033	I-201 C	FW		X												
																\top			
										-			1				\top		
						_		_		3		+				-+	\top		
					_		\parallel	_				1 +			-	+	+		
-	,		1		-		\parallel	_		**	+	+	+	+	-	+	+		
					-	-	+	38	0-1237	7 COC	1	+	-		-	+	+		
					-	_	\parallel	-		-		+-+	-	-	-	-	+		
+			-			_	\parallel	_	-	-	_	+	_	\perp	-	-	+		
ATRIX TY	RGW	= Raw Surface Water = Raw Ground Water		or(am)inated Finished Wa	ater			W = Sea			SW	I = Bottl I = Stori	m Wate			Soil Sludge	е		- Please Ident
PLED BY:	, s	IGNATURE				EJ						VS HON					7/2	DATE VIZZ	0937
NQUISHED BY:	4					EJ	-		-			VS HON				-		26/22	1200
EIVED BY:	0	0 ,/	124	00					-	F	CA		00000				-	2022	10:15
INQUISHED BY:				GF	CITA	CF					-04					7	107	1-026	(0)
EIVED BY:									-										-

•	
A DE	eurofins INTERNAL CHAIN OF CUSTODY RECORD
EEA F	SAMPLE TEMP RECEIVED: Note: If samples are out of temperature range, let the ASMs know. ASMs will determine whether to proceed with analysis or not. SAMPLES REC'D DAY OF COLLECTION? Yes / No
	IR Gun ID = 649A (Observation= 5.3 °C) (Corr.Factor 0.3 °C) (Final = 5.0 °C)
TYPE	OF ICE: Real Synthetic No Ice CONDITION OF ICE: Frozen Partially Frozen Thawed N/A
MET	OD OF SHIPMENT: Pick-Up / Walk-in FedEx UPS / DHL / Area Fast / Top Line / Other:
Com	Ilance Acceptance Criteria:
1	Chemistry: >0, ≤ 6°C, not frozen (NELAP) (if received after 24 hrs of sample collection)
2	Microbiology, Distribution: < 10°C, not frozen (can be ≥10°C if received on ice the same day as sample collection, within 8 hours)
3	Microbiology, Surface Water: < 10°C (If received after 2 hours of sample collection)
semples lempera	amperature range for both Chemistry and Microbiology and temperature does not confirm, then measure the 1 = (Observation= 'C) (Corr.Feotor 'C) (Final = 'C) 1 = (Observation= 'C) (Final = 'C) 1 = (Observation= 'C) (Final = 'C)
quadran	3 = (Observation= 'C) (Corr.Factor 'C) (Final = 'C) 4 = (Observation= 'C) (Corr.Factor 'C) (Final = 'C)
4	Dioxin (1613 or 2,3,7,8 TCDD): must be between 0-4 °C, not frozen (if received after 24 hrs of sample collection)
1	pH Check. Manufacturer: Lot Number:pH strlp type: 0 - 14 or Expiration DateResults:
. 6)	Chiorine check. Manufacturer: Sansafe. Lot No.: Expiration Date: Results
7)	VOA and Radon Headspace: Samples with Headspace (see below)!
	Headspace Documentation (use additional VOC and Radon Internal COFC for additional bottles) Exempt from headspace concerns: Methods 515.4, HAA(6251,562), 505, SPME, @CH, 532LCMS, 556, 536, Anatoxin, LCMS methods paing 40 milyisis, International clients:
Samp ID	Boltle # None/<6 >6mm Test Samp ID Boltle # None/<6
_	
Note S	Imple IDs which have dissimilar headspace (i.e. potential sampling errors):
	SIGNATURE COMPANY/TITLE DATE TIME
RECEIVED	Eurofins Ealon Analytical 1 07/27/2022 10:15
	SIGNATURE COMPANY/TITLE DATE TIME
AMPLES C	Eurofins Eaton Analytical
A FO-FILMS	504 (9,28.21) Ver 9

_

Page Z of 3

ii l				
carefins	INTERNAL CHAI	N OF CUSTODY	RECORD	
Eaton Analytical			RECORD	
EEA Folder Number:	SAMPLE TEMP R Note: If samples are out of ten	.ECEIVED; npersture range, let the ASMs know. ASMs will d	etermine whether to proceed wi	ith analysis or not.
		DAY OF COLLECTION? Yes		
IR Gun ID = 649A (Observation				G.
TYPE OF ICE: Real Synthetic No	CONDITION OF IC	E: Frozen Partially Fro	zen Thawed_	N/A
METHOD OF SHIPMENT: Pick-Up / Walk-in /	FedEx / UPS / DHL / Area Fast	/ Top Line / Other:		
Compliance Acceptance Criteria:				*
1) Chemistry: >0, ≤6°C, not frozen (NELAF	r) (If received after 24 hrs of sample	collection)		
2) Microbiology, Distribution: < 10°C, not	frozen (can be ≥10°C if received on	ice the same day as sample co	lection, within 8 hou	rs)
3) Microbiology, Surface Water: < 10°C (if	received after 2 hours of sample coll	lection)		
out of temperature range for both Chemistry and Microbiology amplest and temperature does not confirm, then measure the mperature of each quadrant and record each temperature of the secrets.	1 - (Observation=	(Final =	"C) (Corr.Factor "C) (Fit	hel =
autan)	3 = (Observation=) (Final = 'C) 4 = (Observation=	°C) (Corr.Factor °C) (F	Final ='O) '
4 Dioxin (1813 or 2,3,7,8 TCDD): must be b	etween 0-4 °C, not frozen (If receive	d after 24 hrs of sample collect	ilan) .	
5) pH Check. Manufacturer:	Lot Number:pH stri	p type: 0 - 14 or	Expiration Date _	Results:
6) Chiorine check. Manufacturer: Sansafe	e. Lot No.: Expiration D	ate: Results		
VOA and Radon No Samples	with Headspace:	Samples with Headspace (s	ee below):	1
· Headspace Docume	ntation (use additional VOC and R	adon Internal COFC for addit	ional bottles)	1
Exempt from headspace concerns; Methods 615	.4, HAA(6251,662), 505, SPME, @CH, 532LCM Botlle # None/<6 >6mm Test	Samp 10 Boltle # None/<8 >6mm	Test Samo ID	lional cliants: Bolije # None/ 8mm Test
mm John Test Sample	Politica mm Politica 1995	Mm - Online	Tast Camp ID	Dordo W. www.
ote Sample IDs which have dissimilar headspace	(i.e. potential sampling errors):			
SIGNATURE SIGNATURE	PRINT NAME	COMPANY/TITLE Eurofins Ealon Analytical	Malanh (2)	10:15
	KELINCK		WHICHICOLL	
SIGNATURE	. PRINT NAME	COMPANY/TITLE	DATE	TIME

Page 3 of 3

QA FO-FAM5504 (9.28.21) Ver 9

Eurofins Eaton Analytical

581 J20A92/FE4A

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer. After printing this label:

2. Pold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filled within strict time limits, see current be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not

FedEx Service Guide.

'50 ROYAL OAKS DR MONROVIA CA 91016 UROFINS EATON ANALYTICAL, INC

581J2/0A92/FE4A

After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

CA-US BUI

Fold the printed page along the horizontal line.

Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

PRIORITY OVERNIGHT

WED - 27 JUL 10:30A

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

Bottle Order Information

Bottle Order: RED-HILL - 625/8015 Bottles

Bottle Order #: 2335
Request From Client: 7/7/2022

Date Order Posted: 7/7/2022 11:11:02AM

Order Status: In Process
Prepared By: Davis Haley

Deliver By Date: 7/8/2022 11:59:00PM

Lab Project Number: 38001111

PWSID:

Order Completion Information

Creator: Davis Haley

Filled by: Sent Date: Sent Via: Tracking #:

Sets	Bottles/Set	Qty	Bottle Type Description	Preservative	Method	Matrix	Sample Type	Comments	Lot#
6	4	24	Amber Glass 1 liter - Sodium Thiosulfate	Sodium Thiosulfate	SUBCONTRACT - 625 Acid LL (EAL) Physis	Water	Normal		
6	2	12	Amber Glass 1 liter - Sodium Thiosulfate	Sodium Thiosulfate	SUBCONTRACT - 625 Base Neutral LL (EAL) Physis	Water	Normal		
6	2	12	Amber Glass 1 liter - Sodium Thiosulfate	Sodium Thiosulfate	SUBCONTRACT - 625 PAH Physis LL (EAL) + TICs	Water	Normal		
6	4	24	Voa Vial 40ml Amber - Sodium thiosulfate	Sodium Thiosulfate	SUBCONTRACT - 8015 Ethanol	Water	Normal		
6	4	24	Voa Vial 40ml - SodiumThio w/HCl-dropper	Sodium Thiosulfate	SUBCONTRACT - 8015 Gas (Purgeable) LL (EAL)	Water	Normal		
6	2	12	Amber Glass 1 L - NaThiosulfate 8mL HCL	Sodium Thiosulfate/H ydrochloric Acid	SUBCONTRACT - 8015 Diesel LL (EAL) and Motor Oil	Water	Normal	2mL of 50% HCL on the side (glass vial)	
6	2	12	Amber Glass 1 L - NaThiosulfate 8mL HCL	Sodium Thiosulfate/H ydrochloric Acid	SUBCONTRACT - 8015 Jet Fuel 5 (JP5)	Water	Normal	2mL of 50% HCL on the side (glass vial)	
6	2	12	Amber Glass 1 L - NaThiosulfate 8mL HCL	Sodium Thiosulfate/H ydrochloric Acid	SUBCONTRACT - 8015 Jet Fuel 8 (JP8)	Water	Normal	2mL of 50% HCL on the side (glass vial)	
6	2	12	VOA Vial 40mL - NaThiosulfate/HCL	Sodium Thiosulfate/H ydrochloric Acid	SUBCONTRACT - 8015 Gas (Purgeable) LL (EAL)	Water	Trip Blank	All preservatives in Vial	

Please notify your PM immediately if an error is found in shipment. When returning samples, please return all provided QC samples.

Login Sample Receipt Checklist

Client: City & County of Honolulu Job Number: 380-12377-1

Login Number: 12377 List Source: Eurofins Eaton Monrovia

List Number: 1

Creator: Ngo, Theodore

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Samples do not require splitting or compositing.	True	
Container provided by EEA	True	

3

4

O

0

10

10

13