Report:

Technical Evaluation of the JBPHH Interagency Team Memorandum on TPH Detections During the Long-Term Monitoring Program

PRESENTED TO: HONOLULU BOARD OF WATER SUPPLY (BWS)

> PRESENTED BY: PAUL C. WINKLER, PH.D.

Interagency Team (Navy) LTM Observations

- In period six, July-December 2023, frequency of Total Petroleum Hydrocarbon (TPH) detections increased.
- Navy team concluded:
 - The increased frequency of detections <u>was</u> associated with laboratory contamination.
 - The increased frequency of detections <u>was</u> associated with chlorine in the water.

What did the Interagency Team (Navy) Use to Make a Conclusion?

- •Increased frequency had the same pattern for all zones – Indicates a Lab Problem
- Reviewed the laboratory method for deficiencies
- •Statistical analysis to correlate issue to residual chlorine

Understanding the Lab Issue

- Laboratories process samples to allow for the measurement of trace concentrations of organic chemicals.
- Laboratories analyze blank samples to monitor contamination from the process Did the laboratory contaminate the samples during processing?
- Surrogate a chemical added to the sample to monitor the process Did the surrogate react with chorine?

Did the Zones Exhibit the Same Pattern?

- Zones H1 and F2 <u>do not</u> have the same pattern for detections of TPH.
- Note LTM 6

Did Laboratory Contamination Add to the Problem?

- 66 Samples analyzed in Zone A1
- One contaminated blank – affects 6 samples
- Laboratory contamination does not appear to be a major cause for <u>increased frequency of</u> TPH detections

Did the Surrogate React with Chlorine?

- The surrogate does react with chlorine.
- The Surrogate concentration was constant throughout the LTM. TPM detections should have occurred throughout the sampling period.
- While the surrogate does react with chlorine, the data indicates that it <u>does not</u> explain why the <u>frequency</u> of TPH detections increased.

Does the Concentration of Residual Chlorine Change the Frequency of TPH Detection?

 Frequency of TPH detections <u>do</u>
<u>not</u> change with chlorine
concentration

Method Compliance and Data Defensibility

• USEPA Methods specify how to collect, preserve and handle samples

TABLE 4-1 (continued) RECOMMENDED SAMPLE CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES^a

> preservatives and analyze as soon as possible.

Sample Matrix	Container ¹	Preservative ²	Holding Time ³
Concentrated waste samples	125-mL wide-mouth glass with PTFE-lined lid	Cool to 0 - 6 °C.	Samples extracted within 14 days and extracts analyzed within 40 days following extraction.
Aqueous samples with no residual chlorine present	4 x 1-L amber glass container with PTFE- lined lid, or other size, as appropriate, to allow use of entire sample for analysis.	Cool to 0 - 6 °C.	Samples extracted within 7 days and extracts analyzed within 40 days following extraction.
Aqueous samples WITH residual chlorine present	4 x 1-L amber glass container with PTFE- lined lid, or other size, as appropriate, to allow use of entire sample for analysis.	Add 3 mL 10% sodium thiosulfate solution per gallon (or 0.008%). Addition of sodium thiosulfate solution to sample container may be performed in the laboratory prior to field use. Cool to 0 - 6 °C.	Samples extracted within 7 days and extracts analyzed within 40 days following extraction.

SEMIVOLATILE ORGANICS/ORGANOCHLORINE PESTICIDES AND HERBICIDES

Method Compliance and Data Defensibility

- Samples were not collected in compliance with EPA recommendations.
- The data is technically not compliant or defensible.
- Data would be qualified by validation procedures.
- Why? Data on how chlorine reacts with fuel is limited difficult to know how the lack of dechlorination may affect low TPH concentrations.

Evaluation of Conclusions

- The increased frequency of detections <u>was</u> associated with laboratory contamination.
 - Large majority of laboratory blanks were acceptable. The data does not support this conclusion.
- The increased frequency of detections <u>was</u> associated with chlorination of the surrogate.
 - Surrogate concentration same during LTM expect no change in TPH frequency
 - Changes in chlorine concentration did not correlate with more frequent TPH detections.