

Review and accept notes from Stakeholder Advisory Group Meeting #11 held on Tuesday, January 10, 2017

Board of Water Bu

Follow-up on Bottled Water

Use	Gallons per year	% BWS total	Equivalent population served
Bottled Water	46,403,000	0.09%	820
Soft Drinks and Breweries	63,323,000	0.12%	1,119
Total	109,726,000	0.21%	1,939

Total BWS water produced = 52,231,500,000 gallons

Area with Lead Concentrations in Soil > 800 mg/kg (Hawaii Department of Health)

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text>

- This presentation was initiated by a request from Stakeholder Advisory Group Member Cruz Vina.
- Last month you heard from Mike Fuke, who is head of Field Operations for BWS, who gave an overview of the sequence of events related to the repair of the main break itself. David Ebersold also gave an overview of the public communications.
- The following slides place this event in the context of the Water Master Plan.

 Abandoned

 Broken Pipe

 Kalanianaole Highway Main Break

 January 24, 2017

- The Kalanianaole Highway break was on a 24" Cast Iron pipe just east of Kahala.
- Repairs were complicated because the pipe was buried deep, going under a stream, and there was an abandoned pipe running just over the top of it.

• Large diameter mains make up 18.6% of the system

- Breaks cost a lot to repair, and it's not just the BWS's labor and materials.
- The community also bears significant costs.

How does this break compare?

	Typical Break	Kalanianaole Break	Pipeline Replacement
Duration	24 hours	96 hours	1+ years
Total Cost	~\$10k	TBD (<\$500k)	\$6.2 Million
Length	10-20 feet	~20 feet	1,400 feet

For this example we're using the costs of this break, \$6M for replacement, and \$500k for repair, at a discount rate of 3%:

- On the chart we see Net Present Value (NPV) over time. We intuitively know that the longer you can keep a pipe in service the less expensive it is. This orange line shows the NPV of pipe replacement.
- However, we also know that as the pipe gets older, it fails more often, and eventually the costs of repairs exceeds the cost of replacement. The purple line shows the NPV of all of the pipe repairs.
- So, if we add these two numbers, we can get the total NPV over the life of the pipe. And here, at the minimum, would be the most economical point to replace the pipe.
- The issue is, for this pipe, even with the very high repair cost, the economical replacement point is when it gets to nearly a break every other year, which we know is unacceptable.

Water Master Plan Analysis

- Completed statistical analysis to determine the number of predicted breaks on each segment over the next 5 years
- Evaluated all 2,100 miles of pipe in the system and determined a risk score

- Likelihood of Failure: Based on predicted breaks
- Consequence of Failure: Based on system and location

Metric	Value	Description	Percentile Rank
Predicted breaks in next 5 years	.007	Very Low	27th
Likelihood of Failure	2	Very Low	28th
Consequence of Failure	70	Very High	94th
Total Risk	140	Low	22nd
Likelihood of Failure	X Con	sequence Failure	Risk

- Because of the high consequence of failure, this pipe had been identified for monitoring on a 10-year cycle.
- Depending on the results of the forensic analysis of this pipe, the rest of the section may or may not be moved up for replacement.

Need Stakeholder Input

- Previously showed 3 pipeline replacement scenarios
- From an economic/engineering standpoint, there is no "right" or "wrong" answer
- Decisions about rate of pipe replacement are about "level of service"

<text><text><section-header><section-header><text><text><text><text>

Using a "pie" analogy to describe the three primary steps of rate making:

- The revenue requirement is the size the pie.
- Cost of service is the cost of the ingredients.
- Rate design is the size of each person's slice of the pie.

- The major elements of a financial plan were reviewed at the last workshop.
- Two workshops ago, the focus was on bracketing the range of scenarios for the Capital Improvement Program, which ultimately determines that amount of money that we need to make the decisions about how much money to borrow and how much to pay in cash.

4 Major Drivers of Revenue Requirements and Rates

Operations and maintenance costs

How the Capital Improvement Program is financed

Financial policies for credit ratings and stability

Preparedness to respond to changing trends and risks

Proposed Updated Policy Framework

- 1. Fund balance / working capital Amount of Cash on Hand
- 2. Purposes and uses of debt When and Why to Borrow
- 3. Debt to net assets ratio How Much can be Borrowed
- 4. Debt service coverage ratio Ability to Make Loan Payments

1. Fund Balance / Working Capital (Amount of Cash on Hand)

Current
Unrestricted fund balance = 45 days of operating expenses
Includes annual debt service
Allows setting aside net revenues that exceed budget for general contingencies (no limits)

Target 180 days, never less than 60 days
Exclude annual debt service (for consistency)
Cover disasters and unforeseen circumstances
Large enough to provide some rate stabilization
>180 days may be re-programmed to fund CIP

Time for Federal Major Disaster Declarations in HI have Averaged 42 Days

Incident Start	Declaration Date	Days	Incident Description	Declaration Type
9/11/2016	10/6/2016	25	Severe Storms, Flooding, Landslides, and Mudslides	Major Disaster
9/4/2014	11/3/2014	60	Volcanic Eruption and Lava Flow	Major Disaster
8/7/2014	9/12/2014	36	Tropical Storm Iselle	Major Disaster
3/3/2012	4/18/2012	46	Severe Storms, Flooding, and Landslides	Major Disaster
3/11/2011	4/8/2011	28	Tsunami Waves	Major Disaster
10/10/2008	1/5/2009	87	Severe Storms and Flooding	Major Disaster
12/4/2007	2/6/2008	64	Severe Storms, High Surf, Flooding, and Mudslides	Major Disaster
10/15/2006	10/17/2006	2	Earthquake	Major Disaster
2/20/2006	5/2/2006	71	Severe Storms, Flooding, Landslides, and Mudslides	Major Disaster
10/30/2004	2/1/2005	94	Severe Storms and Flash Flooding	Major Disaster
10/28/2000	11/9/2000	12	Severe Storms And Flooding	Major Disaster
11/5/1996	11/26/1996	21	Severe Storms/Flooding	Major Disaster
9/11/1992	9/12/1992	1	Hurricane Iniki	Major Disaster

Comparing Disaster Impacts

Agency	Event (Year)	Damage (% of net assets)	Revenue Loss	Days Cash
Kauai Department of Water	Iniki (1992)	1.3%	3% over 9 months	102

• Tourism took 3 years to stabilize and 14 years to recover to pre-Iniki levels

Event Damage									
Agency	(Year)	(% of net assets)	Revenue Loss	Days Casł					
Kauai Department of Water	Iniki (1992)	1.3%	3% over 9 months	102					
Sewerage and Water Board of New Orleans	Katrina (2005)	3.7%	>90% loss in first 3 months, 24% loss in following year	237					
City of Galveston Water Enterprise Fund	lke (2008)	4.5%	1.9% in following year	65					
New Jersey Water Supply Authority	Sandy (2012)	4.8%	2.4% in following year	141					

24 Low Elevation / Coastal Pipeline Bridge Crossings in BWS's System

- Most are 10' elevation or less
- Some are between 10 and 15' but very close to coast
- One is part of Honouliuli recycled water system
- Some (like McCully St Bridge in Waikiki) have 2 pipelines
- Total length 4,505 feet

	Scena	ario A		ario B	Scenario C		
Item	Rate \$ M Rate \$ M		Rate	\$ M			
Damages	2%	% \$22.4 % \$28.9 \$28.9	4%	\$44.8	4%	\$44.8	
Revenue Loss	50% Months 1-3		25% Months 1-3	\$14.4	100% Month 1	\$19.2	
Revenue Loss	25% Months 4-12	\$43.3	10% Months 4-12	\$17.3	50% Months 2-3	\$19.2	
Days Cash	20	201		63	177		

BWS Disaster Recovery Scenarios

Revenue Requirement Impacts of Different Working Capital Levels

		2017		2019	2020		2022		2024		2026	Cumulative Total
90 Days	0	0	0	0	0	0	0	0	0	1	0.5	1.5%
120 Days	0	0	0	0	0	0.5	0.5	0.5	0.5	0.5	0	2.5%
150 Days	0	0	0	0.5	0.5	0.5	0.5	0.5	0.5	0	0	3.0%
180 Days	0	0	0	2	1	0.5	0	0	0	0	0	3.5%

• Only shows changes resulting from changes in days cash

• Does not reflect potential changes in revenues for future capital and operating costs

• Assumes status quo CIP of \$80 million escalated by CPI

2. Purposes and Uses of Debt (When and Why to Borrow)

Current • Select most economical financing source • Term of debt limited to life of facility it is funding • Cannot fund operations & maintenance • No more than 20% variable rate debt • Pay-as-you-go funding "...in a range in conjunction with debt to net assets ratio."

Straw Man • Select most economical financing source • Term of debt limited to life of facility it is funding • Cannot fund operations & maintenance • No more than 20% 25% variable rate debt

3. Debt to Net Assets Ratio (How Much Can be Borrowed)

4. Debt Service Coverage Ratio (Ability to Make Loan Payments)

Other Items

 Next Meeting Wednesday, April 19, 2017
 4:00 – 6:30 pm HECO Trainings Rooms, Honolulu Club

