Quarterly Groundwater Monitoring Report Red Hill Fuel Storage Facility Pearl Harbor, Oahu, Hawaii Latitude: 21°22'15" N Longitude: 157°53'33" W

HDOH Facility ID No. 9-102271 HDOH Release ID No. 99051, 010011, 020028

April 2009

Prepared by:

TEC Inc. 1001 Bishop St. Suite 1400 American Savings Bank Tower Honolulu, Hawaii 96813

Prepared for:

Commander Navy Region Hawaii Environmental Department, Code N45 850 Ticonderoga Street, Suite 110 Pearl Harbor, Hawaii 96860-5101

Table of Contents

Table	of Contents	. i
	tive Summary	
1.0	Introduction	
1.1	Project Objective	6
1.2	Previous Reports	6
1.3	Background	7
1	.3.1 Site Description	7
1	.3.2 Facility Information	7
1	.3.3 UST Information	7
1.4	Previous Environmental Investigations	7
1.5	Regulatory Updates	
2.0	Sample Collection and Analyses 1	. 1
2.1	Monitoring Well Purging 1	. 1
2.2	Groundwater Sample Collection 1	
2.3	Groundwater Sample Analyses 1	
3.0	Groundwater Sample Analytical Results 1	
3.1	February 2009 Sample Analytical Results 1	2
3.2	Groundwater Contaminant Trend1	4
3.3	Results of Oil/Water Interface Measurements 1	.5
3.4	Groundwater Status 1	5
4.0	Summary and Conclusions 1	8
5.0	References	22

List of Tables

Table 1	Analytical Results for Quarterly Groundwater Sampling Release Response R	eport13
Table 2	Oil/Water Interface Measurements	15
Table 3	Action Levels for Compounds of Concern	16
Table 4	Responses to Groundwater Monitoring Results	16

List of Figures

Figure 1	TPH Trends in Groundwater, Round 14 (February 4, 2009)	20
Figure 2	PAH Trends in Groundwater, Round 14 (February 4, 2009)	21

List of Appendices

Appendix A – Laboratory Analytical Reports

Executive Summary

This Quarterly Groundwater Monitoring Report presents the results of groundwater sampling conducted on February 4, 2009 at the United States (US) Navy Bulk Fuel Storage Facility at Red Hill, Oahu, Hawaii (the Facility). The sampling and reporting was conducted by TEC Inc. (TEC) for the Fleet and Industrial Supply Center (FISC) at Pearl Harbor, Hawaii. This report is part of a series of quarterly groundwater monitoring reports provided by the US Navy to the State of Hawaii Department of Health (HDOH) in accordance with HDOH's release response requirements. Currently, there are 18 active and 2 inactive, 12.5 million gallon, field-constructed underground storage tanks (USTs) located at the Facility.

Background

In 2002, the US Navy installed a groundwater monitoring well (currently named RHMW01) into the basal aquifer, directly down-gradient from the Facility, within the lower access tunnel. Groundwater samples from this well indicated that petroleum from the Facility had migrated to the basal aquifer (AMEC, 2002). In 2005, the US Navy began quarterly monitoring of the aquifer to protect their down-gradient drinking water resource associated with the US Navy Well 2254-01. The US Navy Well 2254-01 is located approximately 3,000 feet down-gradient from the Red Hill Fuel Storage Facility and provides approximately 24 % of the potable water to the Pearl Harbor Water System (PHWS).

By September 2005, the US Navy had installed two more groundwater monitoring wells (RHMW02 and RHMW03) within the Facility lower access tunnel, a background groundwater monitoring well (RHMW04) up-gradient from the Facility at ground surface adjacent to the US Navy Firing Range, and a groundwater monitoring well within the US Navy Well 2254-01 infiltration gallery (RHMW2254-01).

All five wells were sampled twice as part of a comprehensive environmental investigation and risk assessment (TEC, 2006). For this investigation, groundwater samples were analyzed for petroleum constituents and compared against HDOH Drinking Water Environmental Action Levels (EALs) (HDOH, July 2005). In addition, a three-dimensional (3-D) groundwater model was developed to produce site-specific risk-based levels (SSRBLs) for compounds of concern. The results of this modeling effort indicated that Jet Propulsion (JP)–5 fuel presented the biggest risk to the US Navy water supply, due to its mobility and toxicity. Finally, the model indicated that a non-aqueous plume (free product) of JP-5 must migrate to within 1,100 feet of the US Navy Well 2254-01 infiltration gallery for HDOH EALs to be exceeded within the gallery. Based on this, free-product must be observed at RHMW01 for EALs to be exceeded at the US Navy Well 2254-01.

During the summer and fall of 2008, HDOH updated their EALs, which resulted in significant changes to the action levels associated with methylnaphthalenes. The drinking water toxicity EAL for these compounds was each previously 240 μ g/L, assuming they were not carcinogens. Evidence that they are carcinogenic to humans has now been accepted by the US Environmental Protection Agency (USEPA), and HDOH adopted more rigorous EALs of 4.7 μ g/L for 1-methylnaphthalene and 24 μ g/L for 2-methylnaphthalene (HDOH, 2008).

The drinking water EAL for naphthalene was also updated during this process. Previously, HDOH based their naphthalene EAL on USEPA Region 9 Preliminary Remediation Goal (USEPA PRG) of 6.2 μ g/L, which is associated with a non-cancer Hazard Index of 1. HDOH has updated their naphthalene drinking water EAL to 17 μ g/L, in deference to the California Department of Public Health's Drinking Water Notification Levels (HDOH, 2008).

Finally, the drinking water EAL for TPH-DRO was increased from 100 μ g/L to 210 μ g/L, although the gross contamination EAL for TPH-DRO remains 100 μ g/L.

Groundwater Protection Plan

In 2008, the US Navy completed the *Red Hill Bulk Fuel Storage Facility Final Groundwater Protection Plan* (TEC, 2008), which specified SSRBLs for each well, and actions that would occur for the pertinent cases, based on categories for each groundwater monitoring well (Categories 1 through 4). The main object of the Plan is to protect groundwater quality entering the US Navy Well 2254-01, which provides potable water to the PHWS. This is accomplished by comparing petroleum concentrations in the Facility wells (RHMW01, RHMW02, and RHMW03) to the SSRBLs and taking the corresponding action. A secondary, but important objective of the Plan is to identify leaking USTs by evaluating increasing concentration trends, or the sudden and lasting presence of free product in one or more groundwater monitoring wells. This quarterly report compares the water quality to these categories and recommended actions.

Current Results

On February 4, 2009 four groundwater samples were collected from RHMW01, RHMW02, RHMW03 and the US Navy Well 2254-01, along with the required quality control samples (duplicate, matrix spike, spike duplicate, trip blank). Samples were analyzed for Total Petroleum Hydrocarbons (TPH) quantified as Diesel-Range Organics (DRO) and Gasoline Range Organics (GRO), Volatile Organic Compounds (VOCs), Polynuclear Aromatic Hydrocarbons (PAHs), and lead.

<u>TPH-DRO</u>

TPH-DRO was detected at 387 micrograms per liter (μ g/L) in RHMW01, 2,840 μ g/L (i.e., the average of normal and duplicate samples) in RHMW02, and at 207 μ g/L in RHMW03. The HDOH Drinking Water EAL and SSRBL for TPH-DRO are 210 μ g/L and 4,500 μ g/L, respectively.

TPH-GRO

For TPH-GRO the HDOH Drinking Water EAL is 100 μ g/L. In samples collected at RHMW01, RHMW02, RHMW02D (i.e., the duplicate sample collected), RHMW03, and RHMW2254-01 estimated values (i.e., values below the laboratory reporting limit, but above the method detection limit) were observed at the following respective levels: 14.4 μ g/L, 52.3 μ g/L, 54.3 μ g/L, 16.1 μ g/L, and 14 μ g/L. The estimated value of 14 μ g/L of TPH-GRO detected at RHMW2254-01, which is well below the HDOH Drinking Water EAL of 100 μ g/L and just above the method detection limit of 10 μ g/L was unexpected. Therefore, analytical results will be closely monitored during future quarterly groundwater sampling events at RHMW2254-01 to

assess whether the detection of trace quantities of TPH-GRO from the February 2009 sampling event represents an anomaly or an apparent analytical trend relative to RHMW2254-01.

Other Parameters

At RHMW02, average concentrations between the normal and duplicate samples were determined to be above the HDOH Drinking Water EALs as follows: naphthalene at 42.9 μ g/L (HDOH EAL is 17 μ g/L) and 1-methylnaphthalene at 22 μ g/L (HDOH Drinking Water EAL is 4.7 μ g/L).

The average analytical values of the normal and duplicate samples for 2-methylnaphthalene at RHMW02 were 10.8 μ g/L. This value slightly exceeds the HDOH Drinking Water Ceiling EAL for 2-methylnaphthalene of 10 μ g/L.

It is noteworthy that 1-methylnaphthalene, which was detected at trace quantities (i.e., estimated to be 0.03 μ g/L) at RHMW2254-01 during the October 2008 sampling event, was not detected during the February 2009 sampling event.

Trend Analysis

At RHMW01, concentrations of TPH-DRO have been greater than the HDOH Drinking Water EAL since September 2005, but less than 25 percent of the SSRBL of 4,500 μ g/L. In February 2009, TPH-DRO was lower in concentration than the October 2008 sampling event. Prior to the October 2008 event, TPH-DRO concentrations had decreased for three consecutive sampling rounds.

At RHMW02, concentrations of TPH-DRO have been greater than the HDOH Drinking Water EAL since September 2005 and greater than 50 percent of the SSRBL of 4,500 μ g/L over that same period. The average TPH-DRO concentration from the October 2008 sampling event increased to above the SSRBL (estimated solubility limit). However, the February TPH-DRO concentration dropped below the SSRBL of 4,500 μ g/L (i.e., average of normal and duplicate samples of 2,840 μ g/L). Three parameters (i.e., naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene) also have exceeded EALs since September 2005. In October 2008, these parameters decreased in concentrations following increasing trends over three previous rounds (since January 2008). During the February 2009 sampling event, the decrease continued as all three parameter concentrations were less than the respective October 2008 values. There are no SSRBLs established for these parameters.

At RHMW03, concentrations of TPH-DRO have fluctuated around the HDOH EAL since September 2005 and are significantly lower than corresponding values observed at RHMW01 and RHMW02. During the February 2009 sampling event, TPH-DRO at RHMW03 (i.e., 207 μ g/L) slightly decreased from the observed October value (i.e., 244 μ g/L) and was slightly less than the newly established HDOH Drinking Water EAL value of 210 μ g/L. Prior to the February 2009 event, TPH-DRO has been increasing in concentration since April 2008.

Current Groundwater Status

Based on the monitoring event that occurred in February 2009, no free product was observed at RHMW01, RHMW02, or RHMW03.

Although TPH-GRO was detected at US Navy Well 2254-01 during the February 2009 sampling event, it does not place the well into the Category 1 status. Since no contamination trend (i.e., two or more consecutive sampling rounds) has been observed at US Navy Well 2254-01, the well does not meet the Category 1 definition.

Category 1 Status Locations

Based upon the February 2009 sampling event, RHMW03 is presently in Category 1 status, since the TPH-DRO value (i.e., 207 μ g/L) dipped slightly below the HDOH Drinking Water EAL (i.e., 210 μ g/L) and this represents a slight decrease in the concentration as compared with the October 2008 concentration. Category 1 response for RHMW03 requires:

1. Quarterly reports to be sent to HDOH.

Category 2 Status Locations

Results from the February 2009 sampling event indicate that RHMW01 is presently in Category 2 status, since the TPH-DRO concentration of 387 μ g/L is greater than the HDOH Drinking Water EAL (210 μ g/L), but less than half the SSRBL of 4,500 μ g/L (estimated solubility limit of JP-5). Category 2 response at RHMW01 requires:

- 1. Quarterly reports to be sent to HDOH; and
- 2. Initiation of a leak determination program to identify if tanks are leaking.

Category 3 Status Locations

Results from the February 2009 sampling event indicate that RHMW02 is presently in Category 3 status (i.e., downgraded from Category 4 status observed during the October 2008 sampling event), since TPH-DRO [2,840 μ g/L and 2,840 μ g/L (duplicate)] is greater than the HDOH Drinking Water EAL (210 μ g/L), but is between one half and the established SSRBL value of 4,500 μ g/L (estimated solubility limit of JP-5). In addition, the HDOH Drinking Water EAL of 4.7 μ g/L for 1-methylnaphthalene was exceeded [i.e., 21.2 μ g/L and 22.8 μ g/L (duplicate)].

Category 3 response at RHMW02 requires:

- 1. Send quarterly reports to HDOH;
- 2. Initiation of a leak determination program to identify if tanks are leaking;
- 3. Increase free product monitoring frequency to once per month (if concentrations increasing);
- 4. Notify HDOH verbally within 7 days and follow with written notification in 30 days;
- 5. Remove sampling pumps, measure product in pertinent wells with interface probe, reinstall pumps if product is not detected; and
- 6. Immediately evaluate tanks for leaks.

Conclusions and Recommendations

There is no indication of an imminent threat to the US Navy Well 2254-01 water resources based on this report, since petroleum concentrations at RHMW01 remain less than half the SSRBLs. Additionally, based upon the February 2009 sampling event, the groundwater status at RHMW02 is Category 3 (i.e., downgraded from Category 4 status observed during the October 2008 sampling event) since the concentration of TPH-DRO was greater than the HDOH Drinking Water EAL (210 μ g/L), but was between one half and the established SSRBL value of 4,500 μ g/L. The Groundwater Protection Plan requires specific responses to Category 3, which should be conducted.

Although 1-methylnaphthalene was detected at trace quantities (i.e., estimated to be 0.03 μ g/L) at RHMW2254-01 during the October 2008 sampling event, it was not detected during the February 2009 sampling event. An unexpected estimated value of 14 μ g/L of TPH-GRO was detected at RHMW2254-01; however, this concentration is well below the HDOH Drinking Water EAL of 100 μ g/L and just above the method detection limit of 10 μ g/L.

The US Navy plans to install an additional monitoring well in the Facility lower access tunnel and dedicated oil/water interface probes in four lower access tunnel wells in the coming year to better monitor contaminant migration in the basal drinking water aquifer.

Quarterly groundwater sampling for TPH-DRO, TPH-GRO, VOCs, PAHs, and lead will continue as previously scheduled until such time that new data indicates that a different schedule is warranted. It is recommended that future quarterly analytical results be closely monitored at RHMW2254-01 to assess whether the detection of trace quantities (i.e., 14 μ g/L) of TPH-GRO from the February 2009 sampling event represents an anomaly or an apparent analytical trend.

1.0 Introduction

This report presents the results of the 14th groundwater sampling and analysis event, conducted in February 2009 at the Red Hill Fuel Storage Facility, Oahu, Hawaii (hereafter referred to as "the Facility"). The Facility consists of 18 active and 2 inactive underground storage tanks (USTs) operated by the Fleet and Industrial Supply Center (FISC), Pearl Harbor. The groundwater sampling and analysis event is part of a groundwater monitoring program for the UST site in response to past UST releases, previous environmental investigations, and recommendations from the State of Hawaii Department of Health (HDOH).

1.1 Project Objective

This groundwater sampling and analysis project was performed to evaluate the presence of chemicals of potential concern in groundwater underlying the Facility. The project was conducted to ensure the Navy remains in compliance with HDOH UST release response requirements as described in Hawaii Administrative Rules (HAR) 11-281 Subchapter 7, Release Response Action. The groundwater sampling and analysis procedures generally followed the procedures described in *Red Hill Bulk Fuel Storage Facility Groundwater Protection Plan* [TEC Inc (TEC), 2008 also referred to as "the Plan"].

This groundwater sampling and analysis event was conducted by TEC under United States (US) Navy Contract Number N47408-04-D-8514, Task Order No. 54.

1.2 Previous Reports

The following groundwater monitoring reports were previously submitted to the HDOH:

- 1. Groundwater Sampling Report, First Quarter 2005 (submitted April 2005);
- 2. Groundwater Sampling Report, Second Quarter 2005 (submitted August 2005);
- 3. Groundwater Sampling Report, Third Quarter 2005 (submitted November 2005);
- 4. Groundwater Sampling Report, Fourth Quarter 2005 (submitted February 2006);
- 5. Groundwater Monitoring Results, July 2006 (submitted September 2006);
- 6. Groundwater Monitoring Results, December 2006 (submitted January 2007);
- 7. Groundwater Monitoring Results, March 2007 (submitted May 2007);
- 8. Groundwater Monitoring Results, June 2007 (submitted August 2007);
- 9. Groundwater Monitoring Results, September 2007 (submitted October 2007);
- 10. Groundwater Monitoring Results, January 2008 (submitted March 2008);
- 11. Groundwater Monitoring Results, April 2008 (submitted May 2008);
- 12. Groundwater Monitoring Results, July 2008 (submitted October 2008); and
- 13. Groundwater Monitoring Results, October and December 2008 (submitted February 2009)

1.3 Background

The following sections provide a description of the site and information on the Facility and USTs.

1.3.1 Site Description

The Facility is located in Halawa Heights on Oahu, Hawaii. Land adjacent to the north of the Facility is occupied by Halawa Correctional Facility and private businesses. Land to the south and west of the Facility includes the Coast Guard Reservation. Moanalua Valley is located east of the Facility (Dawson, 2006).

The Navy Public Works Department operates a potable water infiltration tunnel approximately 1,550 feet hydraulically down-gradient from the Facility (Dawson, 2006). The US Navy Well 2254-01 is located approximately 3,000 feet down-gradient (west) of the Facility and provides approximately 24% of the potable water to the Pearl Harbor Water System, which serves approximately 52,200 military consumers (TEC, 2008).

1.3.2 Facility Information

The Facility consists of 18 active and 2 inactive USTs operated by Navy FISC Pearl Harbor. Each UST has a capacity of 12.5 million gallons. The Facility is located approximately 100 feet above the basal aquifer (Dawson, 2006).

1.3.3 UST Information

The USTs were constructed in the early 1940s. The tanks were constructed of steel and currently contain Jet Propulsion (JP)–5 fuel and F-76 (diesel marine fuel). Previously, several tanks stored Navy Special Fuel Oil, Navy Distillate, aviation gasoline, and motor gasoline. Each tank measures approximately 245 feet in height and 100 feet in diameter. The upper domes of the tanks lie at depths varying between approximately 100 feet and 200 feet below the existing ground surface (TEC, 2006).

1.4 Previous Environmental Investigations

1998 to 2001: From 1998 to 2001, the Navy conducted an investigation at the Facility to assess potential releases from the fuel storage USTs and piping systems. In February 2001, the Navy installed a one-inch diameter sentinel well RHMW01 (previously known as MW-V1D) to monitor for contamination of the basal aquifer underlying the Facility. The well was installed and completed at approximately 100 feet below grade within the underground access tunnel. At the time of well completion, depth to water in RHMW01 was measured at 86 feet below grade (Dawson, 2006).

In February 2001, groundwater samples collected from sentinel well RHMW01 contained total petroleum hydrocarbons (TPH) concentrations ranging from 883 micrograms per liter (μ g/L) to 1,050 μ g/L and total lead ranging from 10.4 μ g/L to 15 μ g/L. The maximum total lead concentration in the samples was equal to the primary drinking water standard of 15 μ g/L for lead and exceeded the HDOH Tier 1 groundwater action level of 5.6 μ g/L (Dawson, 2006).

2005 – **Groundwater Sampling:** The Navy began quarterly groundwater sampling at existing monitoring wells in 2005. Dawson Group, Inc. collected groundwater samples from RHMW01 and the Red Hill Navy Pump Station (US Navy Well 2254-01) in February, June, September, and December 2005.

Samples collected in February and June 2005 were not filtered in the field prior to analysis for lead. Analytical results for samples collected from RHMW01 indicated concentrations of total lead were above the HDOH Tier 1 action level of 5.6 μ g/L. The results were not considered appropriate for risk assessment since the sample had not been filtered. In addition, lead was not a component of fuels from the tanks near RHMW01. Lead may have been part of the Facility construction material (TEC, 2007).

Samples were filtered in September and December 2005, and dissolved lead concentrations were below the HDOH Tier 1 action level. Concentrations of all other contaminants of potential concern were below HDOH Tier 1 action levels.

2005 – **Site Investigation:** As part of a site investigation, TEC installed three groundwater monitoring wells at the Facility between June and September 2005. Well RHMW02 was installed in the lower access tunnel near Tanks 5 and 6. Well RHMW03 was installed in the lower access tunnel near Tanks 13 and 14. Well RHMW04 was installed hydraulically upgradient of the USTs to provide geochemistry for water moving through the basal aquifer beneath the Facility. Wells RHMW02 and RHMW03 were completed to depths of approximately 125 feet below the tunnel floor, and well RHMW04 was completed to a depth of approximately 300 feet below ground surface outside the tunnel. Groundwater samples were collected from the three newly installed wells and two existing wells (RHMW01 and US Navy Well 2254-01) in September 2005.

Naphthalene and trichloroethylene were detected in samples collected from RHMW02 at concentrations greater than the HDOH Tier 1 action levels. Lead was detected in the sample collected from RHMW01 at a concentration greater than the HDOH Tier 1 action level; however, the sample was not filtered in the field prior to analysis. Analytical results for filtered samples obtained by Dawson during the same period indicated concentrations of dissolved lead were below the HDOH Tier 1 action level.

2006 – **Site Investigation:** Dedicated sampling pumps were installed in five wells (RHMW01, RHMW02, RHMW03, RHMW04, and US Navy Well 2254-01). TEC collected groundwater samples from the wells in July 2006. The groundwater samples were analyzed for petroleum constituents. Naphthalene was detected in samples collected from RHMW02 at concentrations above the HDOH Tier 1 action level.

In September 2005, with concurrence from the HDOH, the Navy decided to use the newer HDOH Environmental Action Levels (EALs) for the Red Hill Site Investigation and Risk Assessment project. The EALs are current and provide action levels for more chemicals, and are much more useful for conducting screening risk assessments. Since the HDOH (HDOH May 2005) Policy Letter stated that the two sets of action levels should not be mixed, the Tier 1

screening levels presented in HAR Section 11-281-78 would no longer be used to evaluate environmental impact at the Facility.

2006 – **Groundwater Sampling:** Groundwater samples were collected in December 2006. Analytical results indicated the following:

- No chemicals were detected in groundwater from US Navy Well 2254-01 or RHMW03;
- TPH as diesel range organics (TPH-DRO) was detected in groundwater above the HDOH Drinking Water EALs in RHMW01; and
- TPH as gasoline range organics (TPH-GRO), TPH-DRO, and naphthalene were detected in groundwater above the HDOH Drinking Water EALs in RHMW02.

2007 – **Groundwater Sampling:** Groundwater samples were collected in March, June, and September 2007. Analytical results indicated the following:

- No chemicals were detected above HDOH Drinking Water EALs at US Navy Well 2254-01;
- TPH-DRO exceeded HDOH Drinking Water EALs at RHMW01 during all three sampling events;
- TPH-GRO exceeded HDOH Drinking Water EALs at RHMW02 in March;
- TPH-DRO and naphthalene exceeded HDOH Drinking Water EALs at RHMW02 during all three sampling events;
- 1-methylnaphthalene and 2-methylnaphthalene exceeded HDOH Drinking Water EAL for taste and odor at RHMW02 during all three sampling events; and
- TPH-DRO exceeded HDOH Drinking Water EALs at RHMW03 in June.

2008 – **Groundwater Sampling:** Groundwater samples were collected in January, April, July, and October 2008. Analytical results indicated the following:

- No chemicals were detected above HDOH Drinking Water EALs at US Navy Well 2254-01;
- Trace detections of 1-methylnaphthalene and naphthalene prompted a resample event in December at US Navy Well 2254-01, no chemicals were detected above the method detection limit (MDL);
- TPH-DRO exceeded HDOH Drinking Water EALs at RHMW01;
- TPH-GRO did not exceed HDOH Drinking Water EALs at RHMW02;
- TPH-DRO, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene exceeded HDOH Drinking Water EALs at RHMW02; and
- TPH-DRO exceeded HDOH Drinking Water EALs at RHMW03 in October.

1.5 Regulatory Updates

During the summer and fall of 2008, HDOH updated their EALs, which resulted in significant changes to the action levels associated with methylnaphthalenes. The drinking water toxicity EAL for these compounds was previously 240 μ g/L, assuming they were not carcinogens. Evidence that they are carcinogenic to humans has now been accepted by the US Environmental Protection Agency (USEPA), and HDOH adopted more rigorous EALs of 4.7 μ g/L for 1-

methylnaphthalene and 24 μ g/L for 2-methylnaphthalene, corresponding to a residential tap water scenario, and a 1 in a million cancer risk (HDOH, 2008).

The drinking water EAL for naphthalene has also been updated during this process. Previously, HDOH based their naphthalene EAL on USEPA Region 9 Preliminary Remediation Goal (USEPA PRG) of 6.2 μ g/L, which is associated with a non-cancer Hazard Index of 1. HDOH has updated their naphthalene drinking water EAL to 17 μ g/L, in deference to the California Department of Public Health's Drinking Water Notification Levels, a Hazard Index of 2.7 (HDOH, 2008).

Finally, the drinking water EAL for TPH-DRO was increased from 100 μ g/L to 210 μ g/L, although the gross contamination EAL for TPH-DRO remains 100 μ g/L.

2.0 Sample Collection and Analyses

Field activities relating to groundwater sample collection were conducted on February 4, 2009. Groundwater samples were collected from three monitoring wells located inside the Facility lower access tunnel and one monitoring well located at the Red Hill Navy Pump Station. Sampling and analysis were conducted according to *Red Hill Bulk Fuel Storage Facility Groundwater Protection Plan* (TEC, 2009). A total of seven samples were collected; one normal environmental sample from monitoring wells US Navy Well 2254-01, RHMW01, RHMW02 and RHMW03, one duplicate sample from RHMW02 (Sampled as RHMWA01 and reported as RHMW02D), and one matrix spike and matrix spike duplicate from US Navy Well 2254-01.

2.1 Monitoring Well Purging

The groundwater monitoring wells were purged and sampled using a dedicated pump system. Well purging was considered complete when no less than three successive water quality parameter measurements had stabilized within approximately 10 percent. Field parameters were measured at regular intervals during well purging and included pH, temperature, specific conductivity, dissolved oxygen, and turbidity. Purge water was disposed in the Facility oil/water separator system.

2.2 Groundwater Sample Collection

Each monitoring well was sampled immediately following purging. All wells were sampled directly from their dedicated bladder pump system. Samples were placed into sampling containers with appropriate preservatives [i.e., hydrochloric acid (HCl) for volatile organic analysis, nitric acid (HNO₃) for dissolved lead]. Dissolved lead samples were filtered in the field and placed in preserved bottles. Sample containers were labeled with the date, sample identification number, type of analysis, and sampler's name. The containers were placed on ice in sample coolers and transported under chain-of-custody procedures to the certified laboratory for analysis.

2.3 Groundwater Sample Analyses

Groundwater samples were analyzed by SGS Environmental Service, Inc. in Anchorage, Alaska for TPH-DRO and TPH-GRO by EPA Method 8015B, VOCs by EPA Method 8260B, polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8270C SIM, and dissolved lead by EPA Method 6020.

3.0 Groundwater Sample Analytical Results

This section provides a summary of analytical results for groundwater samples collected from three monitoring wells located in the lower access tunnel of the Facility and one monitoring well located at the Red Hill Navy Pump Station. Duplicate sample results from monitoring wells RHMW02 are reported in this document as RHMW02D. A summary of groundwater analytical results is included in Table 1. Complete analytical laboratory reports are provided in Appendix A.

3.1 February 2009 Sample Analytical Results

All groundwater samples were analyzed for TPH-DRO, TPH-GRO, VOCs, PAHs, and dissolved lead. The results for each groundwater monitoring well are discussed below.

<u>RHMW01</u>

TPH-DRO at 387 μ g/L exceeded the HDOH Drinking Water EAL of 210 μ g/L. Trace concentrations of TPH-GRO, fluorine, and naphthalene were detected well below HDOH EALs (Table 1). All other constituents were not detected.

<u>RHMW02</u>

Eight petroleum constituents were detected at RHMW02: TPH-DRO, TPH-GRO, 1methylnaphthalene, 2-methylnaphthalene, naphthalene, acetone, benzene, and ethylbenzene. TPH-DRO was detected at RHMW02 in the normal and duplicate samples, at 2,840 μ g/L. This result exceeded the HDOH EAL of 210 μ g/L, but not the site-specific risk based level (SSRBL) of 4,500 μ g/L. TPH-GRO was detected at an estimated average concentration of 53.3 μ g/L, well below the HDOH Drinking Water EAL of 100 μ g/L.

Naphthalene was analyzed by USEPA Method 8270C SIM and USEPA Method 8260B. USEPA Method 8260B produced the highest naphthalene concentrations, which averaged 42.9 μ g/L from the normal and duplicate sample (HDOH EAL is 17 μ g/L). In addition, 1-methylnaphthalene and 2-methylnaphthalene were detected by USEPA Method 8270C SIM in the normal and duplicate samples. The average result for 1-methylnaphthalene was 22 μ g/L, greater than the HDOH toxicity EAL of 4.7 μ g/L. The average result for 2-methylnaphthalene was 10.8 μ g/L, less than the HDOH drinking water toxicity EAL of 24 μ g/L, but slightly greater than the HDOH drinking water taste and odor EAL of 10 μ g/L. All other petroleum constituents, including trace concentrations of acetone, benzene, and ethylbenzene, were well below HDOH Drinking Water EALs at RHMW02 (Table 1).

<u>RHMW03</u>

Two constituents were detected at RHMW03: TPH-DRO and TPH-GRO (Table 1). TPH-DRO was detected at an estimated 207 μ g/L, slightly below the HDOH Drinking Water toxicity EAL of 210 μ g/L, but greater than the HDOH Drinking Water taste and odor EAL of 100 μ g/L. TPH-GRO was detected at an estimated 16.1 μ g/L, well below the HDOH Drinking Water EALs of 100 μ g/L. All other constituents were below HDOH Drinking Water EALs at RHMW03.

Table 1. Red Hill Analytical Results for Quarterly Groundwater Monitoring Release Response Report (February 4, 2
--

Table 1.	Red Hill Analytical Results for Quarterly Groundwater Monito	oning Release Respon	HDOH Drinking	1 y 4, 200	,	HMW01			RH	MW02			RHI	MW02D		1	R	HMW03			RHM	W2254-0	1
Method	Chemical	HDOH Residential	Water Ceiling			UG/L				JG/L			ι	JG/L				UG/L				UG/L	
Wethou	Unemical	Drinking Water EALs ¹	EALs ²			ary 4, 20				ry 4, 200				ary 4, 200				ary 4, 20				ary 4, 20	
	TPH as DIESEL RANGE ORGANICS	UG/L 210	UG/L 100	Result 387	Q F	MDL 89.9	RL 449	Result 2840	Q	MDL 89.9	RL 449	Result 2840	Q	MDL 88.4	RL 442	Result 207	Q F	MDL 89.4	RL 447	Result ND	Q U	MDL 92	RL 460
8015B (Petroleum)	TPH as GASOLINE RANGE ORGANICS	100	100	14.4	F	10	100	52.3	F	10	100	54.3	F	10	100	16.1	F	10	100	14	F	10	100
	1-METHYLNAPHTHALENE	4.7	10	ND	U	0.0165	0.0549	21.2		0.161	0.538	22.8		0.163	0.543	ND	U	0.0161	0.0538	ND	U	0.0161	0.0538
	2-METHYLNAPHTHALENE	24	10	ND	U	0.0165	0.0549	10.5		0.161	0.538	11.1		0.163	0.543	ND	U	0.0161	0.0538	ND	U	0.0161	0.0538
		370	20	ND	U	0.0165	0.0549	ND	U	0.161	0.538	ND	U U	0.0163	0.0543	ND	U	0.0161	0.0538	ND	U	0.0161	0.0538
	ACENAPHTHYLENE ANTHRACENE	240 1800	2000 22	ND ND	U U	0.0165	0.0549 0.0549	ND ND	U U	0.161 0.161	0.538 0.538	ND ND	U	0.0163 0.0163	0.0543 0.0543	ND ND	U U	0.0161 0.0161	0.0538 0.0538	ND ND	U U	0.0161 0.0161	0.0538
	BENZO(a)ANTHRACENE	0.092	4.7	ND	Ŭ	0.0165	0.0549	ND	Ŭ	0.161	0.538	ND	Ŭ	0.0163	0.0543	ND	Ŭ	0.0161	0.0538	ND	Ŭ	0.0161	0.0538
	BENZO(a)PYRENE	0.2	0.81	ND	U	0.0165	0.0549	ND	U	0.161	0.538	ND	U	0.0163	0.0543	ND	U	0.0161	0.0538	ND	U	0.0161	0.0538
	BENZO(b)FLUORANTHENE	0.092	0.75	ND	U	0.0165	0.0549	ND	U	0.161	0.538	ND	U	0.0163	0.0543	ND	U	0.0161	0.0538	ND	U	0.0161	0.0538
8270C SIM (PAHs)	BENZO(g,h,i)PERYLENE BENZO(k)FLUORANTHENE	1500 0.92	0.13 0.4	ND ND	U U	0.0165	0.0549 0.0549	ND ND	U U	0.161 0.161	0.538 0.538	ND ND	U U	0.0163	0.0543 0.0543	ND ND	U U	0.0161 0.0161	0.0538 0.0538	ND ND	U U	0.0161 0.0161	0.0538
	CHRYSENE	9.2	1	ND	U	0.0165	0.0549	ND	U	0.161	0.538	ND	U	0.0163	0.0543	ND	U	0.0101	0.0538	ND	U	0.0161	0.0538
	DIBENZ(a,h)ANTHRACENE	0.0092	0.52	ND	U	0.0165	0.0549	ND	U	0.161	0.538	ND	U	0.0163	0.0543	ND	U	0.0161	0.0538	ND	U	0.0161	0.0538
	FLUORANTHENE	1500	130	ND	U	0.0165	0.0549	ND	U	0.161	0.538	ND	U	0.0163	0.0543	ND	U	0.0161	0.0538	ND	U	0.0161	0.0538
		240	950	0.0235	F	0.0165	0.0549	ND	U	0.161	0.538	ND	U	0.0163	0.0543	ND	U	0.0161	0.0538	ND	U	0.0161	0.0538
	INDENO(1,2,3-c,d)PYRENE NAPHTHALENE	0.092 17	0.095 21	ND 0.173	U	0.0165 0.0341	0.0549 0.11	ND 15.2	U	0.161 0.333	0.538 1.08	ND 16.6	U	0.0163 0.337	0.0543 1.09	ND ND	U U	0.0161 0.0333	0.0538 0.108	ND ND	U U	0.0161 0.0333	0.0538
	PHENANTHRENE	240	410	ND	U	0.0341	0.0549	ND	U	0.333	0.538	ND	U	0.0163	0.0543	ND	U	0.0355	0.0538	ND	U	0.0333	0.0538
	PYRENE	180	68	ND	Ū	0.0165	0.0549	ND	Ū	0.161	0.538	ND	Ū	0.0163	0.0543	ND	Ū	0.0161	0.0538	ND	Ū	0.0161	0.0538
		0.52	50000	ND	U	0.15	0.5	ND	U	0.15	0.5	ND	U	0.15	0.5	ND	U	0.15	0.5	ND	U	0.15	0.5
	1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	200 0.067	970 500	ND ND	U U	0.31 0.15	1 0.5	ND ND	U U	0.31 0.15	1 0.5	ND ND	UU	0.31 0.15	1 0.5	ND ND	U	0.31 0.15	1 0.5	ND ND	U U	0.31 0.15	1 0.5
	1.1.2-TRICHLOROETHANE	5	50000	ND	U	0.13	1	ND	U	0.13	1	ND	U	0.13	1	ND	U	0.13	1	ND	U	0.13	1
	1,1-DICHLOROETHANE	2.4	50000	ND	Ū	0.31	1	ND	U	0.31	1	ND	Ū	0.31	1	ND	Ū	0.31	1	ND	Ū	0.31	1
	1,2,3-TRICHLOROPROPANE (TCP)	0.6	50000	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1
	1,2,4-TRICHLOROBENZENE 1,2-DIBROMO-3-CHLOROPROPANE (DBCP)	70 0.04	3000 10	ND ND	U U	0.31 0.62	1 2	ND ND	U U	0.31 0.62	1 2	ND ND	UU	0.31 0.62	1	ND ND	U	0.31 0.62	1	ND ND	U U	0.31 0.62	1
	1,2-DIBROMOETHANE (EDB)	0.0065	50000	ND	U	0.02	1	ND	U	0.82	2 1	ND	Ŭ	0.02	1	ND	U	0.02	1	ND	U	0.02	1
	1,2-DICHLOROBENZENE	600	10	ND	Ū	0.31	1	ND	Ŭ	0.31	1	ND	Ū	0.31	1	ND	Ū	0.31	1	ND	Ū	0.31	1
	1,2-DICHLOROETHANE	0.15	700	ND	U	0.15	0.5	ND	U	0.15	0.5	ND	U	0.15	0.5	ND	U	0.15	0.5	ND	U	0.15	0.5
		5	10	ND	U	0.31	1	ND	U U	0.31	1	ND	UU	0.31	1	ND ND	U U	0.31	1	ND	U	0.31	1
	1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	180 0.4	50000 50000	ND ND	U U	0.31 0.12	0.4	ND ND	U	0.31 0.12	0.4	ND ND	U	0.31 0.12	0.4	ND	U	0.31 0.12	1 0.4	ND ND	U U	0.31 0.12	0.4
	1,4-DICHLOROBENZENE	75	5	ND	Ŭ	0.15	0.5	ND	U	0.15	0.5	ND	Ŭ	0.15	0.5	ND	Ū	0.15	0.5	ND	Ū	0.15	0.5
	ACETONE	22000	20000	ND	U	3.1	10	8.51	F	3.1	10	8.59	F	3.1	10	ND	U	3.1	10	ND	U	3.1	10
	BENZENE	5	170	ND	U	0.12	0.4	0.26	F	0.12	0.4	0.24	F	0.12	0.4	ND	U	0.12	0.4	ND	U	0.12	0.4
	BROMODICHLOROMETHANE BROMOFORM	0.22 100	50000 510	ND ND	U U	0.15 0.31	0.5	ND ND	U U	0.15 0.31	0.5	ND ND	U	0.15 0.31	0.5	ND ND	U	0.15 0.31	0.5	ND ND	U U	0.15 0.31	0.5
	BROMOMETHANE	8.7	50000	ND	Ŭ	0.94	3	ND	U	0.94	3	ND	Ŭ	0.94	3	ND	U	0.94	3	ND	Ŭ	0.94	3
8260B (VOCs)	CARBON TETRACHLORIDE	5	520	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1
	CHLOROBENZENE	100	50	ND	U	0.15	0.5	ND	U	0.15	0.5	ND	U	0.15	0.5	ND	U	0.15	0.5	ND	U	0.15	0.5
	CHLOROETHANE CHLOROFORM	8600 70	16 2400	ND ND	U U	0.31 0.3	1	ND ND	U U	0.31 0.3	1	ND ND	U U	0.31 0.3	1	ND ND	U U	0.31 0.3	1	ND ND	U U	0.31 0.3	
	CHLOROMETHANE	1.8	50000	ND	Ŭ	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1
	cis-1,2-DICHLOROETHYLENE	70	50000	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1
	cis-1,3-DICHLOROPROPENE	0.43	50000	ND	U	0.15	0.5	ND	U	0.15	0.5	ND	U	0.15	0.5	ND	U	0.15	0.5	ND	U	0.15	0.5
	DIBROMOCHLOROMETHANE ETHYLBENZENE	0.16 700	50000 30	ND ND	U U	0.15 0.31	0.5 1	ND 0.49	U F	0.15 0.31	0.5	ND 0.52	U	0.15 0.31	0.5 1	ND ND	U U	0.15 0.31	0.5	ND ND	U U	0.15 0.31	0.5
	HEXACHLOROBUTADIENE	0.86	30 6	ND	U	0.31	1	0.49 ND	Ū	0.31	1	0.52 ND	Ū	0.31	1	ND	U	0.31	1	ND	U	0.31	1
	M,P-XYLENE (SUM OF ISOMERS)	10000	20	ND	Ū	0.62	2	ND	Ŭ	0.62	2	ND	Ū	0.62	2	ND	Ū	0.62	2	ND	Ū	0.62	2
	METHYL ETHYL KETONE (2-BUTANONE)	7100	8400	ND	U	3.1	10	ND	U	3.1	10	ND	U	3.1	10	ND	U	3.1	10	ND	U	3.1	10
	METHYL ISOBUTYL KETONE (4-METHYL-2-PENTANONE)	2000	1300	ND	U	3.1	10	ND	U	3.1	10 5	ND	U	3.1	10	ND	U	3.1	10	ND	U	3.1 1	10 5
	METHYLENE CHLORIDE NAPHTHALENE	4.8 17	9100 21	ND ND	U U	0.62	2	ND 42.8	U	1 0.62	5	ND 43	U	1 0.62	5 2	ND ND	U	1 0.62	5 2	ND ND	U U	0.62	5
	STYRENE	100	10	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1
	TETRACHLOROETHYLENE(PCE)	5	170	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1
		1000	40	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1
	trans-1,2-DICHLOROETHENE TRICHLOROETHYLENE (TCE)	100 5	260 310	ND ND	U U	0.31 0.31	1	ND ND	U U	0.31 0.31	1	ND ND	U U	0.31 0.31	1	ND ND	U U	0.31 0.31	1	ND ND	U U	0.31 0.31	1
	VINYL CHLORIDE	5 2	3400	ND ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31	1	ND	U	0.31		ND	U	0.31	1
	LEAD	15	50000	ND	U	0.31	1	ND	U	0.31	1	ND	U		1	ND	U		1	ND	U	0.31	1
	Polynuclear aromatic hydrocarbons									d detectio			-				, v						<u> </u>

PAHs - Polynuclear aromatic hydrocarbons VOCs - Volatile organic compounds

UG/L - Micrograms per Liter

Q - Data qualifier

U - Indicates that the compound was analyzed for but not detected at or above the stated limit

F - Indicates that the compound was identified but the concentration was above the MDL and below the RL

200 - Result exceeds one or both HDOH EALs

¹ Toxicity-based environmental action levels, Table D-1b, Screening For Environmental Concerns At Sites With Contaminated Soil and Groundwater, HDOH, 2008

² Taste, odor and solubility thresholds, Table G-1, Screening For Environmental Concerns At Sites With Contaminated Soil and Groundwater, HDOH, 2008

MDL - Method detection limit RL - Reporting limit TPH - Total petroleum hydrocarbons

ND - Indicates that the compound was not detected above the stated method detection limit

NA - not analyzed

US Navy Well 2254-01

TPH-GRO was detected at US Navy Well 2254-01 at 14 μ g/L estimated value (i.e., the value is below the laboratory reporting limit, but above the method detection limit). The HDOH Drinking Water EAL for TPH-GRO is 100 μ g/L.

3.2 Groundwater Contaminant Trend

Groundwater samples have been collected and analyzed by TEC since September 2005. Figure 1 shows TPH trends in groundwater at the Facility. Figure 2 shows PAH trends in groundwater at the Facility. In these figures, open icons (without fill) represent the method detection limit for chemicals that were not detected.

<u>RHMW01</u>

TPH-GRO has only previously been detected in April 2008 at 13.6F μ g/L, which is below the HDOH Drinking Water EAL of 100 μ g/L. In February 2009, TPH-GRO was detected at 14.4 μ g/L. TPH-DRO was detected above the HDOH Drinking Water EAL during all groundwater sampling events. The concentration of TPH-DRO observed during the February 2009 sampling event decreased after showing an increase in October 2008.

<u>RHMW02</u>

TPH-GRO was detected in all but one of the sampling rounds since September 2005, and exceeded the HDOH Drinking Water EAL of 100 μ g/L three times during 2006 and 2007. The maximum concentration detected has been 148 μ g/L.

The concentration of TPH-DRO was relatively stable at RHMW02 until July 2008, ranging from 2,250 to 2,995 μ g/L. However, during the July and October 2008 sampling events, these average concentrations increased (i.e., average between the normal and duplicate samples). Specifically, the July 2008 average concentration was 4,055 μ g/L and the October 2008 average concentration was 5,420 μ g/L. Both of these values were well above the HDOH Drinking Water EAL of 210 μ g/L, with the October 2008 average also exceeding the SSRBL of 4,500 μ g/L. The average concentration of TPH-DRO observed during the February 2009 sampling event (i.e., 2,840 μ g/L) decreased relative to the July and October 2008 sampling event concentrations to approximate levels not observed since the April 2008 sampling event. This decrease in the February 2009 sampling event downgraded RHMW02 to a Category 3 status from the previous Category 4 status that followed the October 2008 sampling event.

PAHs at RHMW02 remain above the HDOH Drinking Water EALs for naphthalene and 1methylnaphthalene. Concentrations decreased in the October 2008 and February 2009 sampling events after showing a slight increasing trend since the April 2008 sampling event.

<u>RHMW03</u>

TPH-GRO has never been detected prior to February 2009. The February 2009 sampling event detected TPH-GRO at an estimated value of 16.1 μ g/L, well below the HDOH Drinking Water EAL of 100 μ g/L.

TPH-DRO had shown a slight increasing trend peaking at 244 μ g/L during the October 2008 sampling event. During the February 2009 sampling event, TPH-DRO concentrations decreased to 207 μ g/L. Generally, the concentrations of TPH-DRO have remained relatively stable, near the DOH Drinking Water EAL of 210 μ g/L. Concentrations of petroleum-related compounds at RHMW03 have normally been the lowest of the three wells located within the Facility.

3.3 Results of Oil/Water Interface Measurements

The presence and thickness of light-non aqueous phased liquids (LNAPL), otherwise known as free product, released from the USTs were measured during this sampling event using a 300 ft Heron Oil/Water Interface Meter. The static water levels were measured to a precision of ± 0.01 ft and fuel thickness was measured to a precision of ± 0.01 ft with this equipment.

In January 2008, fuel was measured in monitoring wells RHMW01 and RHMW02 at a thickness of < 0.01 ft, but has not been observed in other monitoring wells as of this document.

Measurements to determine the presence and thickness of fuel were conducted at RHMW01, RHMW02, and RHMW03 prior to the current sampling round. At the end of February and the end of March subsequent rounds of oil/water interface measurements were conducted. In February, a measurement at RHMW01 was planned but was not completed due to extensive work being performed by Tank 02, making RHMW01 inaccessible. No free product was observed in any of these wells before and after this event (see Table 2).

	RHMW01 SWL LNAPL		RHM	1W02	RHMW03		
5			SWL	LNAPL	SWL	LNAPL	
Date	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
January 2008	17.74	< 0.01	18.78	< 0.01	NT	NT	
July 2008	19.04	0.00	18.91	0.00	18.86	0.00	
October 2008	18.61	0.00	18.56	0.00	18.82	0.00	
November 2008	18.50	0.00	18.45	0.00	18.51	0.00	
January 2009	19.28	0.00	19.22	0.00	102.04	0.00	
February 2009	NT	NT	18.66	0.00	18.75	0.00	
March 2009	18.59	0.00	18.57	0.00	18.67	0.00	

Table 2. Oil/Water Interface Measurements

- SWL Static water level, elevation above mean sea level
- LNAPL Light Non-Aqueous Phased Liquid, fuel product on groundwater
 - ft Feet
 - NT Not Taken

3.4 Groundwater Status

Constituents of concern are defined as those petroleum-related chemicals that have been observed in the groundwater samples above the HDOH EALs. In accordance with the *Red Hill Bulk Fuel Storage Facility Final Groundwater Protection Plan* (TEC, 2008), Table 3 defines the

constituents of concern in groundwater at the Facility and the SSRBLs and updated EALs for each (HDOH 2008).

Chemical	EAL (µg/L)	SSRBL (µg/L)
Petroleum Mixtures		
TPH-DRO	210	4,500
TPH-GRO	100	4,500
Semi-Volatile Compounds		
1-Methylnaphthalene	4.7	NA
2-Methylnaphthalene	24	NA
Naphthalene	17	NA

Table 3. Action	Levels for	Constituents	of Concern
-----------------	------------	--------------	------------

NA – Not applicable or not determined

SSRBLs are applicable at RHMW01, RHMW02, and RHMW03

EALs are applicable at US Navy Well 2254-01

In addition, the Plan defines four results categories of groundwater status for the Facility, based on concentrations of constituents of concern in RHMW01, RHMW02, RHMW03 and the US Navy Well 2254-01, and requires specific responses when these categories are observed during quarterly groundwater sampling. Table 4 describes each of the four results categories and identifies response actions to be taken in accordance with the Plan.

Table 4. Results	Categories and Res	ponse Actions to Cha	anges in Grou	ndwater Status

Results Category	RHMW02 or RHMW03	RHMW01	US Navy Pumping Well 2254-01
Results Category 1: Result above detection limit but below drinking water EAL and trend for all compounds stable or decreasing	А	А	A,D,M,E,P
Results Category 2: Trend for any compound increasing or drinking water EAL exceeded	Α, Β	A, B	A,B,C,D,E,F,G,K, L,O
Results Category 3: Result Between 1/10X SSRBL and SSRBL for benzene, or between 1/2X SSRBL and SSRBL for TPH	A,B,G,H,I,J	A,B,E,G,H,I,J	A,B,C,D,E,F,G,I,J, K,L,O
Results Category 4: Result Exceeding any SSRBL or petroleum product observed	A,C,D,E,F,I,J, K,M,N	A,C,D,E,F,I, J,K,M,N,O	A,C,D,E,F,G,I,J,K, L,O

Specific Responses:

A. Send quarterly reports to HDOH

B. Begin program to determine the source of leak

C. Notify HDOH verbally within 1 day and follow with written notification in 30 days

D. Notify FISC Chain of Command within 1 day

E. Send Type 1 Report (see box below) to HDOH

- F. Send Type 2 Report (see box below) to HDOH
- G. Increase monitoring frequency to once per month (if concentrations increasing)
- H. Notify HDOH verbally within 7 days and follow with written notification in 30 days
- I. Remove sampling pumps, measure product in pertinent wells with interface probe, re-install pumps if product is not detected.
- J. Immediately determine leaking tank
- K. Collect samples from nearby Halawa Deep Monitoring Well (2253-03) and OWDF MW01
- L. Provide alternative water source at 2254-01
- M. Prepare for alternative water source at US Navy Well 2254-01
- N. Re-measure for product every month with reports to HDOH
- O. Install additional monitoring well downgradient

Report Types

HDOH Type 1 Report

- Re-evaluate Tier 3 Risk Assessment/groundwater model results
- Proposal to HDOH on a course of action

HDOH Type 2 Report

• Proposal for groundwater treatment

In response to the previous Category 3 conditions at RHMW02, oil/water interface measurements were collected in October 2008, November 2008, January 2009, February 2009, and March 2009 at Red Hill tunnel monitoring wells (Table 2). To date, there is no evidence of fuel on groundwater at any of these wells based on oil/water interface measurements.

Although TPH-GRO was detected at US Navy Well 2254-01 during the February 2009 sampling event, it does not place the well into the Category 1 status. Since no contamination trend (i.e., two or more consecutive sampling rounds) has been observed at US Navy Well 2254-01, the well does not meet the Category 1 definition.

Category 1 Status Locations

Based upon the February 2009 sampling event, RHMW03 is presently in Category 1 status, since the TPH-DRO value (i.e., 207 μ g/L) dipped slightly below the HDOH EAL for drinking water (i.e., 210 μ g/L) and this represents a slight decrease in the concentration as compared with the October 2008 concentration. Category 1 response requires:

1. Quarterly reports to be sent to HDOH.

Category 2 Status Locations

Results from the February 2009 sampling event indicate that RHMW01 is presently in Category 2 status, since the TPH-DRO concentration of $387\mu g/L$ is greater than the HDOH EAL for drinking water (210 $\mu g/L$), but less than half the SSRBL of 4,500 $\mu g/L$ (estimated solubility limit of JP-5). Category 2 response at RHMW01 requires:

- 1. Quarterly reports to be sent to HDOH; and
- 2. Initiation of a leak determination program to identify if tanks are leaking.

Category 3 Status Locations

Results from the February 2009 sampling event indicate that RHMW02 is presently in Category 3 status (i.e., downgraded from Category 4 status observed during the October 2008 sampling event), since TPH-DRO [2,840 μ g/L and 2,840 μ g/L (duplicate)] is greater than the HDOH EAL for drinking water (210 μ g/L), but is between one half and the established SSRBL value of 4,500 μ g/L (estimated solubility limit of JP-5). In addition, the HDOH Drinking Water EAL of 4.7 μ g/L for 1-methylnaphthalene was exceeded [i.e., 21.2 μ g/L and 22.8 μ g/L (duplicate)].

Category 3 response at RHMW02 requires:

- 1. Send quarterly reports to HDOH;
- 2. Initiation of a leak determination program to identify if tanks are leaking;
- 3. Increase free product monitoring frequency to once per month (if concentrations increasing);
- 4. Notify HDOH verbally within 7 days and follow with written notification in 30 days;
- 5. Remove sampling pumps, measure product in pertinent wells with interface probe, reinstall pumps if product is not detected; and
- 6. Immediately evaluate tanks for leaks.

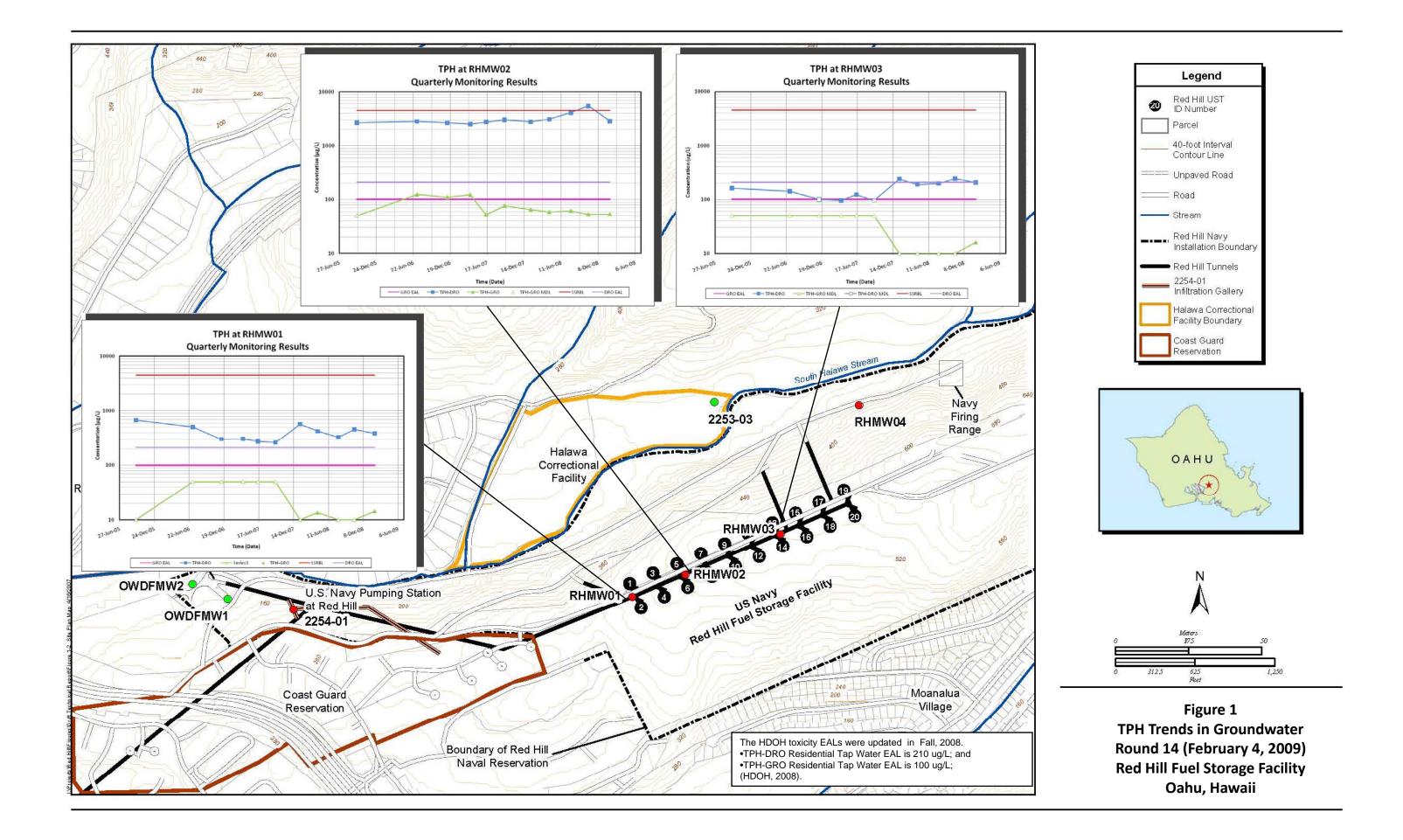
4.0 Summary and Conclusions

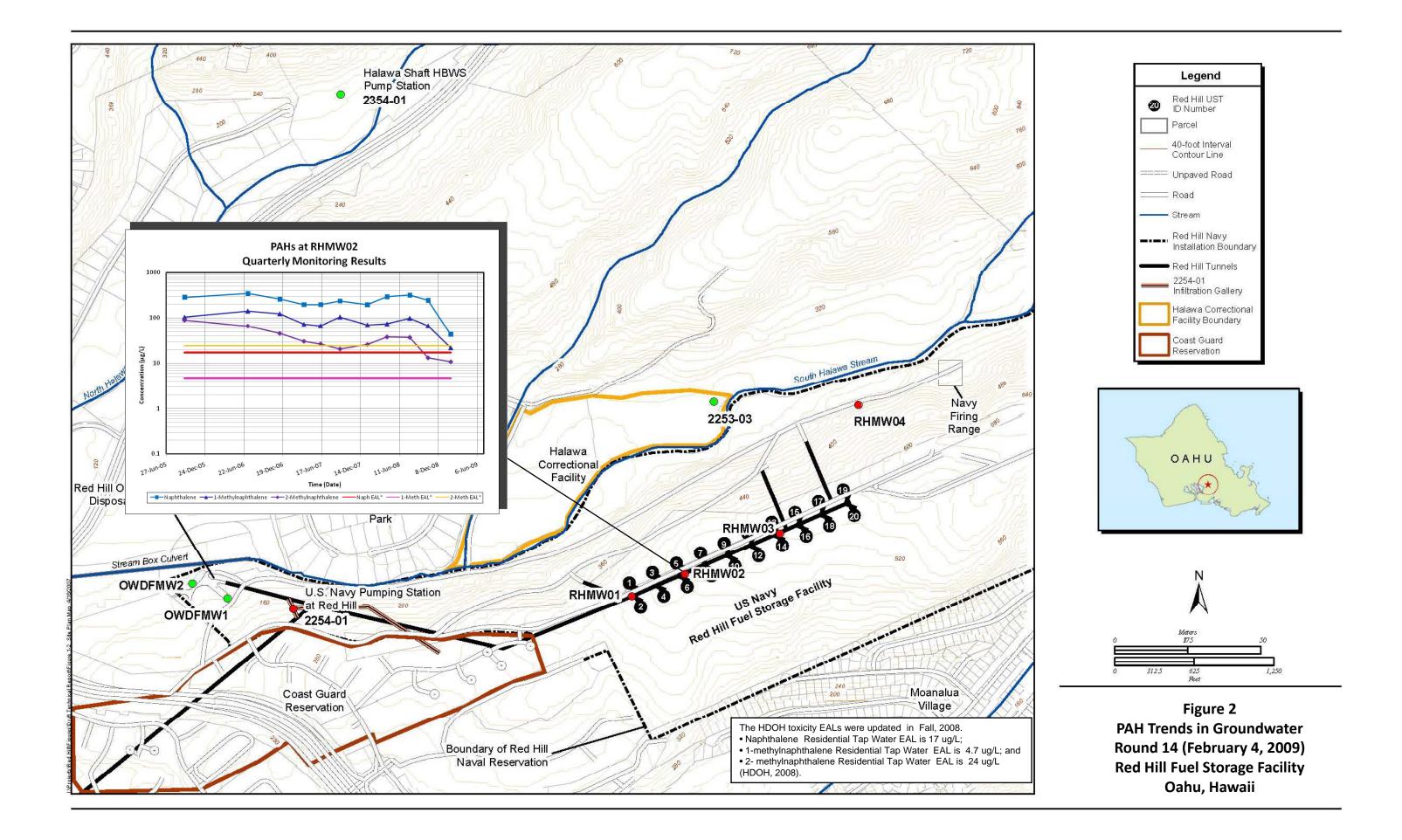
<u>Summary</u>

At RHMW02, the concentration of TPH-DRO in groundwater exceeded the EAL of 210 μ g/L and was between one half and the established SSRBL value of 4,500 μ g/L, which indicates Category 3 groundwater status at RHMW02. This represents a downgrade from Category 4 status, which was prompted by the October 2008 sampling effort. Although 1-methylnaphthalene which was detected at RHMW2254-01 during the October 2008 sampling event, it was not detected during the February 2009 sampling event. An unexpected estimated value of 14 μ g/L of TPH-GRO was detected at RHMW2254-01; however, this concentration is well below the HDOH Drinking Water EAL of 100 μ g/L and just above the method detection limit of 10 μ g/L.

Conclusions

- Oil/water interface measurements were collected in October 2008, November 2008, January 2009, February 2009, and March 2009 from Red Hill tunnel monitoring wells and no free product was measured (Table 2).
- The concentration of TPH-DRO measured at RHMW01 in February 2009 was less than one tenth of the SSRBL. RHMW01 is down-gradient from RHMW02 and between RHMW02 and the US Navy Well 2254-01, an important drinking water source for the Pearl Harbor Water System.
- The US Navy Well 2254-01 is not imminently threatened at this time; however, conditions should be monitored closely to determine if any USTs in the Facility are currently leaking fuel into the subsurface and whether or not the unexpected value at


RHMW2254-01 of 14 μ g/L of TPH-GRO from the February 2009 sampling event represents an anomaly or an apparent analytical trend.


- Category 4 activities should continue due to the October 2008 analytical results. These activities include:
 - Re-evaluate risk assessment and groundwater model (TEC, 2007) to ensure both are valid and protective of human health and the environment under the existing conditions and provide a report describing the results of this re-evaluation to the HDOH;
 - Evaluate potential requirement for groundwater treatment and provide a report describing the results of this re-evaluation to the HDOH;
 - Implement monthly oil/water interface measurements at RHMW01, RHMW02, and RHMW03, and provide monthly letter reports of the results;
 - Evaluate tanks associated with the middle section of the Facility (Tanks 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14);
 - Collect samples from nearby Halawa Deep Monitoring Well (2253-03) and OWDF MW01;
 - Prepare for alternative water source at US Navy Well 2254-01, as necessary.

The US Navy plans to install an additional monitoring well (RHMW05) in the lower access tunnel of the Facility between RHMW01 and the US Navy Well 2254-01 to better monitor the quality of the groundwater moving from the Facility to the US Navy Well 2254-01.

It is recommended that RHMW01, RHMW02, RHMW03, and RHMW05 (once installed) be evaluated monthly for the presence of fuel on groundwater, in accordance with the Plan. The US Navy plans to install dedicated oil/water interface probes in each of these wells to facilitate these measurements.

Quarterly groundwater sampling for TPH-DRO, TPH-GRO, VOCs, PAHs, and lead will continue as previously scheduled until such time that new data indicates that a different schedule is warranted. The quarterly collection and analysis of groundwater samples will continue to monitor the quality of the groundwater located beneath the Facility. Groundwater monitoring reports will be submitted to the HDOH upon receipt and evaluation of laboratory analytical results. It is recommended that future quarterly analytical results be closely monitored at RHMW2254-01 to assess whether the detection of trace quantities (i.e., $14 \mu g/L$) of TPH-GRO from the February 2009 sampling event represents an anomaly or an apparent analytical trend.

5.0 References

AMEC. *Red Hill Bulk Fuel Storage Facility Investigation Report*, Prepared for NAVFAC Pacific, August 2002.

Dawson Group, Inc. Fourth Quarter 2005 Groundwater Sampling Report, Red Hill Fuel Storage Facility, Hawaii. February 2006.

Hawaii Administrative Rules, Title 11, Chapter 281, Subchapter 7.

HDOH. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Volume 1: Summary Tier 1 Lookup Tables. Interim Final. May 2005.

HDOH. Use of May 2005 Environmental Action Levels ("EALs") at Leaking Underground Storage Tank Sites. Memo. July 2005.

HDOH. Evaluation of Environmental Hazards at Sites with Contaminated Soil and Groundwater. Summer 2008 (updated October 2008).

The Environmental Company, Inc. and AMEC. *Red Hill Bulk Fuel Storage Facility Work Plan, Pearl Harbor, Hawaii.* June 2005.

TEC, Inc. Red Hill Bulk Fuel Storage Facility, Final – Addendum Planning Documents, Pearl Harbor, Hawaii. May 2006.

TEC, Inc. *Red Hill Bulk Fuel Storage Facility, Final Technical Report, Pearl Harbor, Hawaii.* August 2007.

TEC, Inc. *Red Hill Bulk Fuel Storage Facility, Final Groundwater Protection Plan, Pearl Harbor, Hawaii.* January 2008.

Appendix A Laboratory Analytical Reports

SGS North America Inc. Alaska Division Level II Laboratory Data Report

Project: Client: SGS Work Order: Red Hill BFSF The Environmental Company, Inc. (TEC) 1090476

Released by:

Contents:

Cover Page Case Narrative Final Report Pages Quality Control Summary Forms Chain of Custody/Sample Receipt Forms

Note:

Unless otherwise noted, all quality assurance/quality control criteria is in compliance with the standards set forth by the proper regulatory authority, the SGS Quality Assurance Program Plan, and the National Environmental Accreditation Conference.

SGS Environmental Services Inc.

Case Narrative

Customer: THEENVC Project: 1090476 NPDL WO:

The Environmental Company, Inc. (TEC) Red Hill BFSF

Refer to the sample receipt form for information on sample condition.

1090476005 PS **RHMW02-WG14**

8015C - DRO - The pattern is consistent with a weathered middle distillate.

8270D SIM - PQLs are elevated due to sample dilution. Sample analyzed at a dilution due to matrix interference with internal standards.

8270D SIM - Surrogate recovery for terphenyl-d14 doe snot meet QC criteria (biased high) due to sample dilution.

1090476006 PS RHMWA01-WG14

8015C - DRO - The pattern is consistent with a weathered middle distillate.

1090476002 BMS **RHMW2254-WG14 MS**

8260B - BMS recoveries for dichlorodifluoromethane, chloromethane, vinyl chloride and trans-1,2-dichloroethene do not meet QC goals (biased high). Refer to LCS for accuracy.

8260B - BMS/BMSD RPD for trans-1,2-dichloroethene does not meet QC goals (biased high). Refer to LCS/LCSD RPD for precision.

1090476003 BMSD

RHMW2254-WG14 MSD

8260B - BMSD recoveries for dichlorodifluoromethane, chloromethane and vinyl chloride do not meet QC goals (biased high). Refer to LCS for accuracy. 8260B - BMS/BMSD RPD for trans-1,2-dichloroethene does not meet QC goals (biased high). Refer to LCS/LCSD RPD for precision.

883392 LCS VXX/19212]

8260B - LCS recoveries for dichlorodifluoromethane, chloromethane and vinyl chloride do not meet QC goals (biased high). These analytes were not detected above the PQL in the associated samples.

883393 LCSD VXX/19212

8260B - LCSD recoveries for dichlorodifluoromethane, chloromethane and vinyl chloride do not meet QC goals (biased high). These analytes were not detected above the PQL in the associated samples.

883395 CCV VMS/10380]

8260B - CCV recoveries for dichlorodifluoromethane, chloromethane, vinyl chloride and trichlorofluoromethane do not meet QC goals (biased high). These analytes were not detected above the PQL in the associated samples. 8260B - ICV recoveries for several analytes do not meet QC goals (biased high). These analytes were not detected above the PQL in the associated samples.

Laboratory Analytical Report

Client: The Environmental Company, Inc. 1001 Bishop Street Ste 1400 ASB Tower Honolulu, HI 96813

> Attn: **Jeff Hart** T: (808)528-1445 F:(808)528-0768 jshart@tecinc.com

Project: Red Hill BFSF

Workorder No.: 1090476

Certification:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, other than the conditions noted on the sample data sheet(s) and/or the case narrative. This certification applies only to the tested parameters and the specific sample(s) received at the laboratory.

If you have any questions regarding this report, or if we can be of further assistance, please contact your SGS Project Manager.

Tamara Rentz tamara.rentz@sgs.com Project Manager

Enclosed are the analytical results associated with this workorder.

As required by the state of Alaska and the USEPA, a formal Quality Assurance/Quality Control Program is maintained by SGS. A copy of our Quality Assurance Plan (QAP), which outlines this program is available at your request.

The Laboratory certification numbers are AK971-05 (DW), UTS-005 (CS) and AK00971 (Micro) for ADEC and AK100001 for NELAP (RCRA methods: 1020A, 1311, 6010B, 7470A, 7471A, 9040B, 9045C, 9056, 9060, 8015B, 8021B, 8081A/8082, 8260B, 8270C).

Except as specifically noted, all statements and data in this report are in conformance to the provisions set forth by the SGS QAP, the National Environmental Laboratory Accreditation Program and, when applicable, other regulatory authorities.

If you have any questions regarding this report or if we can be of any assistance, please contact your SGS Project Manager at 907-562-2343. All work is being provided under SGS general terms and conditions (http://www.sgs.com/terms_and_conditions.htm)

The following descriptors may be found on your report which will serve to further qualify the data.

MDL PQL CL	Method Detection Limit Practical Quantitation Limit (reporting limit). Control Limit
U	Indicates the analyte was analyzed for but not detected.
F	Indicates value that is greater than or equal to the MDL.
J	The quantitation is an estimation.
ND	Indicates the analyte is not detected
В	Indicates the analyte is found in a blank associated with the sample.
*	The analyte has exceeded allowable regulatory or control limits.
D	The analyte concentration is the result of dilution.
GT	Greater Than
LT	Less Than
Q	QC parameter out of acceptance range.
M	A matrix effect was present.
E R	The analyte result is above the calibrated range. Rejected
DF	Analytical Dilution Factor
JL	The analyte was positively identified, but the quantitation is a low estimation.
<surr></surr>	Surrogate QC spiked standard
<surr is=""></surr>	Surrogate / Internal Standard QC spiked standard
QC	Quality Control
QA	Quality Assurance
MB	Method Blank
LCS (D)	Laboratory Control Sample (Duplicate)
MS(D)	Matrix Spike (Duplicate)
BMS(D)	Site Specific Matrix Spike (Duplicate)
RPD	Relative Percent Difference
ICV	Initial Calibration Verification
CCV	Continuous Calibration Verification
MSA	Method of Standard Addition

Notes: Soil samples are reported on a dry weight basis unless otherwise specified All DRO/RRO analyses are integrated per SOP.

SAMPLE SUMMARY

Print Date: 2/19/2009 10:58 am

Client Name: The Environmental Company, Inc. (TEC) Project Name: Red Hill BFSF Workorder No.: 1090476

Analytical Methods

Method Description	Analytical Method
8270 PAH SIM Semi-Vol GC/MS Liq/Liq ext.	8270D SIMS
AFCEE 3.1 8260 (W)	SW8260B
Dissolved Metals by ICP-MS	SW6020
DRO by 8015B (W)	SW8015C
GRO (W)	SW8015C

Sample ID Cross Reference

Lab Sample ID	Client Sample ID
1090476001	RHMW2254-WG14
1090476002	RHMW2254-WG14 MS
1090476003	RHMW2254-WG14 MSD
1090476004	RHMW03-WG14
1090476005	RHMW02-WG14
1090476006	RHMWA01-WG14
1090476007	RHMW01-WG14
1090476008	TB01-WG14

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW2254-WG14** SGS Ref. #: 1090476001 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 09:20 Receipt Date/Time: 02/06/09 11:00

Dissolved Metals by ICP/MS

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qu	<u>alifiers</u>
Lead	ND	1.00	0.310	ug/L	5	MMS5820	MXX21362	
Batch Information								
Analytical Batch: MMS5820		Prep Batch	Initial Prep Wt./Vol.: 50 mL					
Analytical Method: SW6020		Prep Metho	Prep Extract Vol.: 50 mL					
Analysis Date/Time: 02/17/09 11:41	Prep Date/Time: 02/12/09 12:00					Container ID:1090476001-0		
Dilution Factor: 5						Analyst: SC	L	

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW2254-WG14** SGS Ref. #: 1090476001 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 09:20 Receipt Date/Time: 02/06/09 11:00

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers	
Gasoline Range Organics	14.0 J	100	10.0	ug/L	1	VFC9351	VXX19194	
4-Bromofluorobenzene <surr></surr>	85.2	50-150		%	1	VFC9351	VXX19194	
Batch Information								
Analytical Batch: VFC9351		Prep Batch		Initial Prep Wt./Vol.: 5 mL				
Analytical Method: SW8015C	Prep Method: SW5030B					Prep Extract Vol.: 5 mL		
Analysis Date/Time: 02/10/09 12:33	Prep Date/Time: 02/10/09 09:30					Container ID:1090476001-A		
Dilution Factor: 1						Analyst: Hl	N	

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW2254-WG14** SGS Ref. #: 1090476001 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 09:20 Receipt Date/Time: 02/06/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	Prep Batch Qualifiers	
Diesel Range Organics	ND	0.460	0.0920	mg/L	1	XFC8449	XXX20585	
5a Androstane <surr></surr>	79.6	50-150		%	1	XFC8449	XXX20585	
Batch Information								
Analytical Batch: XFC8449		Prep Batch:		Initial Prep Wt./Vol.: 870 mL				
Analytical Method: SW8015C	Prep Method: SW3520C					Prep Extract Vol.: 1 mL		
Analysis Date/Time: 02/11/09 15:55	Prep Date/Time: 02/10/09 10:50					Container ID:1090476001-H		
Dilution Factor: 1						Analyst: KE	C	

Print Date: 2/19/2009 10:58 am

Analytical Prep

Client Sample ID: **RHMW2254-WG14** SGS Ref. #: 1090476001 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 09:20 Receipt Date/Time: 02/06/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

Parameter	Result	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch Qualifiers
			<u></u>	<u></u>	<u></u>		<u></u>
Benzene	ND	0.400	0.120	ug/L	1	VMS10380	VXX19212
Toluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Ethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
n-Butylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,4-Dichlorobenzene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,2-Dichloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,3,5-Trimethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
4-Chlorotoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Chlorobenzene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
4-Methyl-2-pentanone (MIBK)	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212
cis-1,2-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
4-Isopropyltoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
cis-1,3-Dichloropropene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
n-Propylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Styrene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dibromomethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
trans-1,3-Dichloropropene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,4-Trichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Acetone	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212
1,1,2,2-Tetrachloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,2-Dibromo-3-chloropropane	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212
Methyl-t-butyl ether	ND	5.00	1.50	ug/L	1	VMS10380	VXX19212
Tetrachloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dibromochloromethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,3-Dichloropropane	ND	0.400	0.120	ug/L	1	VMS10380	VXX19212
1,2-Dibromoethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Carbon tetrachloride	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,1,1,2-Tetrachloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
Chloroform	ND	1.00	0.300	ug/L	1	VMS10380	VXX19212
Bromobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Chloromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,3-Trichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Bromomethane	ND	3.00	0.940	ug/L	1	VMS10380	VXX19212
Bromochloromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Vinyl chloride	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dichlorodifluoromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Member of SGS Group (Société Générale de Surveillance)

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW2254-WG14** SGS Ref. #: 1090476001 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 09:20 Receipt Date/Time: 02/06/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

						Analytical	Prep
Parameter_	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch Qualifier
Chloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
sec-Butylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Bromodichloromethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,1-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
2-Butanone (MEK)	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212
Methylene chloride	ND	5.00	1.00	ug/L	1	VMS10380	VXX19212
Trichlorofluoromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
P & M -Xylene	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212
Naphthalene	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212
o-Xylene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Bromoform	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1-Chlorohexane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,4-Trimethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
tert-Butylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,1,1-Trichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,1-Dichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
2-Chlorotoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Trichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
trans-1,2-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2-Dichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
2,2-Dichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Hexachlorobutadiene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Isopropylbenzene (Cumene)	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2-Dichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,1-Dichloropropene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,1,2-Trichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,3-Dichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,3-Trichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2-Dichloroethane-D4 <surr></surr>	102	73-120		%	1	VMS10380	VXX19212
Toluene-d8 <surr></surr>	98	80-120		%	1	VMS10380	VXX19212
4-Bromofluorobenzene <surr></surr>	103	76-120		%	1	VMS10380	VXX19212
Batch Information							
Analytical Batch: VMS10380		Prep Batch	: VXX19212			Initial Prep	Nt./Vol.: 5 mL
Analytical Method: SW8260B		Prep Metho	od: SW5030B			Prep Extrac	t Vol.: 5 mL
Analysis Date/Time: 02/16/09 17:18		Prep Date/	Time: 02/16/09 ⁻	11:48		Container II	D:1090476001-D
Dilution Factor: 1						Analyst: DS	Η

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Member of SGS Group (Société Générale de Surveillance)

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW2254-WG14** SGS Ref. #: 1090476001 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 09:20 Receipt Date/Time: 02/06/09 11:00

Polynuclear Aromatics GC/MS

Parameter_	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Quali	ifiers
Acenaphthylene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Acenaphthene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Fluorene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Phenanthrene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Anthracene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Fluoranthene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Pyrene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Benzo(a)Anthracene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Chrysene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Benzo[b]Fluoranthene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Benzo[k]fluoranthene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Benzo[a]pyrene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Indeno[1,2,3-c,d] pyrene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Dibenzo[a,h]anthracene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Benzo[g,h,i]perylene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Naphthalene	ND	0.108	0.0333	ug/L	1	XMS4825	XXX20586	
1-Methylnaphthalene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
2-Methylnaphthalene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Terphenyl-d14 <surr></surr>	92.7	50-135		%	1	XMS4825	XXX20586	
Batch Information								
Analytical Batch: XMS4825	Prep Batch: XXX20586					Initial Prep	Vt./Vol.: 930 mL	
Analytical Method: 8270D SIMS		Prep Metho	d: SW3520C			Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 02/10/09 22:34		Prep Date/	Time: 02/10/09 1	0:50		Container II	D:1090476001-J	
Dilution Factor: 1						Analyst: JD	Н	

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW03-WG14** SGS Ref. #: 1090476004 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 11:10 Receipt Date/Time: 02/06/09 11:00

Dissolved Metals by ICP/MS

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> <u>Batch Qualifiers</u>
Lead	ND	1.00	0.310	ug/L	5	MMS5820	MXX21362
Batch Information							
Analytical Batch: MMS5820		Prep Batch: M	IXX21362			Initial Prep	Wt./Vol.: 50 mL
Analytical Method: SW6020		Prep Method:	SW3010A			Prep Extrac	t Vol.: 50 mL
Analysis Date/Time: 02/17/09 11:48		Prep Date/Tin	ne: 02/12/09 12	::00		Container II	D:1090476004-G
Dilution Factor: 5						Analyst: SC	L

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562.2343 f (907) 561.5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW03-WG14** SGS Ref. #: 1090476004 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 11:10 Receipt Date/Time: 02/06/09 11:00

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Gasoline Range Organics	16.1 J	100	10.0	ug/L	1	VFC9351	VXX19194
4-Bromofluorobenzene <surr></surr>	85.4	50-150		%	1	VFC9351	VXX19194
Batch Information							
Analytical Batch: VFC9351		Prep Batch	: VXX19194			Initial Prep	Wt./Vol.: 5 mL
Analytical Method: SW8015C		Prep Metho	d: SW5030B			Prep Extrac	ct Vol.: 5 mL
Analysis Date/Time: 02/10/09 13:28		Prep Date/	Time: 02/10/09 (09:30		Container I	D:1090476004-A
Dilution Factor: 1						Analyst: Hl	N

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW03-WG14** SGS Ref. #: 1090476004 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 11:10 Receipt Date/Time: 02/06/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	<u>DF</u>	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	0.207 J	0.447	0.0894	mg/L	1	XFC8449	XXX20585
5a Androstane <surr></surr>	88.9	50-150		%	1	XFC8449	XXX20585
Batch Information							
Analytical Batch: XFC8449		Prep Batch	: XXX20585			Initial Prep	Wt./Vol.: 895 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 02/11/09 16:23		Prep Date/	Time: 02/10/09 1	0:50		Container I	D:1090476004-H
Dilution Factor: 1						Analyst: KI	C

Print Date: 2/19/2009 10:58 am

Analytical Prep

Client Sample ID: **RHMW03-WG14** SGS Ref. #: 1090476004 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 11:10 Receipt Date/Time: 02/06/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

Parameter	<u>Result</u>	PQL/CL	MDL	Unite	DE	<u>Analytical</u> Batch	Ratch Qualifiers
<u>Parameter</u>	Result	<u>FQL/CL</u>	MDL	<u>Units</u>	DF	<u>Batch</u>	Batch Qualifiers
Benzene	ND	0.400	0.120	ug/L	1	VMS10380	VXX19212
Toluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Ethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
n-Butylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,4-Dichlorobenzene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,2-Dichloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,3,5-Trimethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
4-Chlorotoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Chlorobenzene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
4-Methyl-2-pentanone (MIBK)	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212
cis-1,2-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
4-Isopropyltoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
cis-1,3-Dichloropropene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
n-Propylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Styrene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dibromomethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
trans-1,3-Dichloropropene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,4-Trichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Acetone	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212
1,1,2,2-Tetrachloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,2-Dibromo-3-chloropropane	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212
Methyl-t-butyl ether	ND	5.00	1.50	ug/L	1	VMS10380	VXX19212
Tetrachloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dibromochloromethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,3-Dichloropropane	ND	0.400	0.120	ug/L	1	VMS10380	VXX19212
1,2-Dibromoethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Carbon tetrachloride	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,1,1,2-Tetrachloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
Chloroform	ND	1.00	0.300	ug/L	1	VMS10380	VXX19212
Bromobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Chloromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,3-Trichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Bromomethane	ND	3.00	0.940	ug/L	1	VMS10380	VXX19212
Bromochloromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Vinyl chloride	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dichlorodifluoromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW03-WG14** SGS Ref. #: 1090476004 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 11:10 Receipt Date/Time: 02/06/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

Parameter Chloroethane	Result							
Chloroethane		PQL/CL	MDL	<u>Units</u>	DF	<u>Batch</u>	Batch Qualifiers	
Chioroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
sec-Butylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Bromodichloromethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212	
1,1-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
2-Butanone (MEK)	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212	
Methylene chloride	ND	5.00	1.00	ug/L	1	VMS10380	VXX19212	
Trichlorofluoromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
P & M -Xylene	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212	
Naphthalene	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212	
o-Xylene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Bromoform	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1-Chlorohexane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2,4-Trimethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
tert-Butylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1,1-Trichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1-Dichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
2-Chlorotoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Trichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
trans-1,2-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2-Dichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
2,2-Dichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Hexachlorobutadiene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Isopropylbenzene (Cumene)	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2-Dichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1-Dichloropropene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1,2-Trichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,3-Dichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2,3-Trichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2-Dichloroethane-D4 <surr></surr>	105	73-120		%	1	VMS10380	VXX19212	
Toluene-d8 <surr></surr>	98.8	80-120		%	1	VMS10380	VXX19212	
4-Bromofluorobenzene <surr></surr>	102	76-120		%	1	VMS10380	VXX19212	
Batch Information								
Analytical Batch: VMS10380		Prep Batch: VXX19212				Initial Prep \	Vt./Vol.: 5 mL	
Analytical Method: SW8260B		Prep Method: SW5030B				Prep Extract Vol.: 5 mL		
Analysis Date/Time: 02/16/09 17:52 Dilution Factor: 1		Prep Date/Time: 02/16/09 11:48				Container ID:1090476004-D Analyst: DSH		

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW03-WG14** SGS Ref. #: 1090476004 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 11:10 Receipt Date/Time: 02/06/09 11:00

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers	<u>s</u>
Acenaphthylene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Acenaphthene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Fluorene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Phenanthrene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Anthracene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Fluoranthene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Pyrene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Benzo(a)Anthracene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Chrysene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Benzo[b]Fluoranthene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Benzo[k]fluoranthene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Benzo[a]pyrene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Indeno[1,2,3-c,d] pyrene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Dibenzo[a,h]anthracene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Benzo[g,h,i]perylene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Naphthalene	ND	0.108	0.0333	ug/L	1	XMS4825	XXX20586	
1-Methylnaphthalene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
2-Methylnaphthalene	ND	0.0538	0.0161	ug/L	1	XMS4825	XXX20586	
Terphenyl-d14 <surr></surr>	85.2	50-135		%	1	XMS4825	XXX20586	
Batch Information								
Analytical Batch: XMS4825		Prep Batch	XXX20586			Initial Prep	Vt./Vol.: 930 mL	
Analytical Method: 8270D SIMS		Prep Method: SW3520C				Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 02/11/09 00:11		Prep Date/	Fime: 02/10/09 1	0:50		Container ID:1090476004-J		
Dilution Factor: 1						Analyst: JD	Н	

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW02-WG14** SGS Ref. #: 1090476005 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 12:40 Receipt Date/Time: 02/06/09 11:00

Dissolved Metals by ICP/MS

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifier	<u>s</u>
Lead	ND	1.00	0.310	ug/L	5	MMS5820	MXX21362	
Batch Information								
Analytical Batch: MMS5820		Prep Batch	: MXX21362			Initial Prep	Nt./Vol.: 50 mL	
Analytical Method: SW6020		Prep Metho	od: SW3010A			Prep Extrac	t Vol.: 50 mL	
Analysis Date/Time: 02/17/09 11:50		Prep Date/	Time: 02/12/09 1	2:00		Container I	D:1090476005-G	
Dilution Factor: 5						Analyst: SC	L	

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW02-WG14** SGS Ref. #: 1090476005 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 12:40 Receipt Date/Time: 02/06/09 11:00

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Gasoline Range Organics	52.3 J	100	10.0	ug/L	1	VFC9351	VXX19194
4-Bromofluorobenzene <surr></surr>	116	50-150		%	1	VFC9351	VXX19194
Batch Information							
Analytical Batch: VFC9351		Prep Batch	: VXX19194			Initial Prep	Wt./Vol.: 5 mL
Analytical Method: SW8015C		Prep Metho	od: SW5030B			Prep Extrac	ct Vol.: 5 mL
Analysis Date/Time: 02/10/09 13:46		Prep Date/	Time: 02/10/09 (09:30		Container I	D:1090476005-A
Dilution Factor: 1						Analyst: HI	N

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW02-WG14** SGS Ref. #: 1090476005 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 12:40 Receipt Date/Time: 02/06/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	Prep Batch Qualifiers
Diesel Range Organics	2.84	0.449	0.0899	mg/L	1	XFC8449	XXX20585
5a Androstane <surr></surr>	69.3	50-150		%	1	XFC8449	XXX20585
Batch Information							
Analytical Batch: XFC8449		Prep Batch:	XXX20585			Initial Prep	Wt./Vol.: 890 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 02/11/09 16:32		Prep Date/	Time: 02/10/09 1	0:50		Container I	D:1090476005-H
Dilution Factor: 1						Analyst: KE	C

Print Date: 2/19/2009 10:58 am

Analytical Prep

Client Sample ID: **RHMW02-WG14** SGS Ref. #: 1090476005 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 12:40 Receipt Date/Time: 02/06/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

Paramatar	<u>Result</u>	PQL/CL	MDL	Unito	DE	<u>Anaryticar</u> Botob	Potoh Qualifiara
<u>Parameter</u>	Result	FQL/CL		<u>Units</u>	DF	<u>Batch</u>	Batch Qualifiers
Benzene	0.260 J	0.400	0.120	ug/L	1	VMS10380	VXX19212
Toluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Ethylbenzene	0.490 J	1.00	0.310	ug/L	1	VMS10380	VXX19212
n-Butylbenzene	2.37	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,4-Dichlorobenzene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,2-Dichloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,3,5-Trimethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
4-Chlorotoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Chlorobenzene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
4-Methyl-2-pentanone (MIBK)	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212
cis-1,2-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
4-Isopropyltoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
cis-1,3-Dichloropropene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
n-Propylbenzene	8.60	1.00	0.310	ug/L	1	VMS10380	VXX19212
Styrene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dibromomethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
trans-1,3-Dichloropropene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,4-Trichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Acetone	8.51 J	10.0	3.10	ug/L	1	VMS10380	VXX19212
1,1,2,2-Tetrachloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,2-Dibromo-3-chloropropane	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212
Methyl-t-butyl ether	ND	5.00	1.50	ug/L	1	VMS10380	VXX19212
Tetrachloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dibromochloromethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,3-Dichloropropane	ND	0.400	0.120	ug/L	1	VMS10380	VXX19212
1,2-Dibromoethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Carbon tetrachloride	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,1,1,2-Tetrachloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
Chloroform	ND	1.00	0.300	ug/L	1	VMS10380	VXX19212
Bromobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Chloromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,3-Trichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Bromomethane	ND	3.00	0.940	ug/L	1	VMS10380	VXX19212
Bromochloromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Vinyl chloride	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dichlorodifluoromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
				U U			

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW02-WG14** SGS Ref. #: 1090476005 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 12:40 Receipt Date/Time: 02/06/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

						Analytical	Prep		
Parameter_	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch Qualifiers		
Chloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
sec-Butylbenzene	7.67	1.00	0.310	ug/L	1	VMS10380	VXX19212		
Bromodichloromethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212		
1,1-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
2-Butanone (MEK)	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212		
Methylene chloride	ND	5.00	1.00	ug/L	1	VMS10380	VXX19212		
Trichlorofluoromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
P & M -Xylene	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212		
Naphthalene	42.8	2.00	0.620	ug/L	1	VMS10380	VXX19212		
o-Xylene	0.400 J	1.00	0.310	ug/L	1	VMS10380	VXX19212		
Bromoform	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
1-Chlorohexane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
1,2,4-Trimethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
tert-Butylbenzene	1.19	1.00	0.310	ug/L	1	VMS10380	VXX19212		
1,1,1-Trichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
1,1-Dichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
2-Chlorotoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
Trichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
trans-1,2-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
1,2-Dichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
2,2-Dichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
Hexachlorobutadiene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
Isopropylbenzene (Cumene)	6.48	1.00	0.310	ug/L	1	VMS10380	VXX19212		
1,2-Dichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
1,1-Dichloropropene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
1,1,2-Trichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
1,3-Dichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
1,2,3-Trichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212		
1,2-Dichloroethane-D4 <surr></surr>	104	73-120		%	1	VMS10380	VXX19212		
Toluene-d8 <surr></surr>	98.4	80-120		%	1	VMS10380	VXX19212		
4-Bromofluorobenzene <surr></surr>	101	76-120		%	1	VMS10380	VXX19212		
Batch Information									
Analytical Batch: VMS10380		Prep Batch: VXX19212				Initial Prep	Nt./Vol.: 5 mL		
Analytical Method: SW8260B		Prep Method: SW5030B					t Vol.: 5 mL		
Analysis Date/Time: 02/16/09 18:26		Prep Date/Time: 02/16/09 11:48					Container ID:1090476005-D		
Dilution Factor: 1						Analyst: DS	Н		

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW02-WG14** SGS Ref. #: 1090476005 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 12:40 Receipt Date/Time: 02/06/09 11:00

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers	
Acenaphthylene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Acenaphthene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Fluorene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Phenanthrene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Anthracene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Fluoranthene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Pyrene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Benzo(a)Anthracene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Chrysene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Benzo[b]Fluoranthene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Benzo[k]fluoranthene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Benzo[a]pyrene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Indeno[1,2,3-c,d] pyrene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Dibenzo[a,h]anthracene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Benzo[g,h,i]perylene	ND	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Naphthalene	15.2	1.08	0.333	ug/L	10	XMS4828	XXX20586	
1-Methylnaphthalene	21.2	0.538	0.161	ug/L	10	XMS4828	XXX20586	
2-Methylnaphthalene	10.5	0.538	0.161	ug/L	10	XMS4828	XXX20586	
Terphenyl-d14 <surr></surr>	162	* 50-135		%	10	XMS4828	XXX20586	
Batch Information								
Analytical Batch: XMS4828		Prep Batch	: XXX20586			Initial Prep	Wt./Vol.: 930 mL	
Analytical Method: 8270D SIMS		Prep Method: SW3520C				Prep Extrac	t Vol.: 1 mL	
Analysis Date/Time: 02/12/09 19:57		Prep Date/Time: 02/10/09 10:50				Container ID:1090476005-I		
Dilution Factor: 10						Analyst: JD	Н	

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMWA01-WG14** SGS Ref. #: 1090476006 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 12:05 Receipt Date/Time: 02/06/09 11:00

Dissolved Metals by ICP/MS

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifier	<u>s</u>
Lead	ND	1.00	0.310	ug/L	5	MMS5820	MXX21362	
Batch Information								
Analytical Batch: MMS5820		Prep Batch	: MXX21362			Initial Prep	Nt./Vol.: 50 mL	
Analytical Method: SW6020		Prep Metho	od: SW3010A			Prep Extrac	t Vol.: 50 mL	
Analysis Date/Time: 02/17/09 11:52		Prep Date/	Time: 02/12/09 1	2:00		Container I	D:1090476006-G	
Dilution Factor: 5						Analyst: SC	L	

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMWA01-WG14** SGS Ref. #: 1090476006 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 12:05 Receipt Date/Time: 02/06/09 11:00

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Gasoline Range Organics	54.3 J	100	10.0	ug/L	1	VFC9351	VXX19194
4-Bromofluorobenzene <surr></surr>	116	50-150		%	1	VFC9351	VXX19194
Batch Information							
Analytical Batch: VFC9351		Prep Batch	VXX19194			Initial Prep	Wt./Vol.: 5 mL
Analytical Method: SW8015C		Prep Metho	d: SW5030B			Prep Extrac	ct Vol.: 5 mL
Analysis Date/Time: 02/10/09 14:05		Prep Date/	Fime: 02/10/09 (09:30		Container I	D:1090476006-A
Dilution Factor: 1						Analyst: Hl	N

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMWA01-WG14** SGS Ref. #: 1090476006 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 12:05 Receipt Date/Time: 02/06/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	Prep Batch Qualifiers
Diesel Range Organics	2.84	0.442	0.0884	mg/L	1	XFC8449	XXX20585
5a Androstane <surr></surr>	73	50-150		%	1	XFC8449	XXX20585
Batch Information							
Analytical Batch: XFC8449		Prep Batch:	XXX20585			Initial Prep	Wt./Vol.: 905 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 02/11/09 16:42		Prep Date/1	ime: 02/10/09 1	0:50		Container I	D:1090476006-H
Dilution Factor: 1						Analyst: KE	C

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562.2343 f (907) 561.5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Analytical Prep

Client Sample ID: **RHMWA01-WG14** SGS Ref. #: 1090476006 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 12:05 Receipt Date/Time: 02/06/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

Parameter_	<u>Result</u>	PQL/CL	MDL	Units	DF	Batch	Batch Qualifiers
Farameter	Result	<u>r de/oe</u>		onts		Daten	Daten Quaimers
Benzene	0.240 J	0.400	0.120	ug/L	1	VMS10380	VXX19212
Toluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Ethylbenzene	0.520 J	1.00	0.310	ug/L	1	VMS10380	VXX19212
n-Butylbenzene	2.46	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,4-Dichlorobenzene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,2-Dichloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,3,5-Trimethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
4-Chlorotoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Chlorobenzene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
4-Methyl-2-pentanone (MIBK)	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212
cis-1,2-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
4-Isopropyltoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
cis-1,3-Dichloropropene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
n-Propylbenzene	9.00	1.00	0.310	ug/L	1	VMS10380	VXX19212
Styrene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dibromomethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
trans-1,3-Dichloropropene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,4-Trichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Acetone	8.59 J	10.0	3.10	ug/L	1	VMS10380	VXX19212
1,1,2,2-Tetrachloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,2-Dibromo-3-chloropropane	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212
Methyl-t-butyl ether	ND	5.00	1.50	ug/L	1	VMS10380	VXX19212
Tetrachloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dibromochloromethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,3-Dichloropropane	ND	0.400	0.120	ug/L	1	VMS10380	VXX19212
1,2-Dibromoethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Carbon tetrachloride	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,1,1,2-Tetrachloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
Chloroform	ND	1.00	0.300	ug/L	1	VMS10380	VXX19212
Bromobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Chloromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,3-Trichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Bromomethane	ND	3.00	0.940	ug/L	1	VMS10380	VXX19212
Bromochloromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Vinyl chloride	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dichlorodifluoromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMWA01-WG14** SGS Ref. #: 1090476006 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 12:05 Receipt Date/Time: 02/06/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

						Analytical	<u>Prep</u>	
Parameter_	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch Qualifiers	
Chloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
sec-Butylbenzene	7.81	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Bromodichloromethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212	
1,1-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
2-Butanone (MEK)	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212	
Methylene chloride	ND	5.00	1.00	ug/L	1	VMS10380	VXX19212	
Trichlorofluoromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
P & M -Xylene	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212	
Naphthalene	43.0	2.00	0.620	ug/L	1	VMS10380	VXX19212	
o-Xylene	0.470 J	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Bromoform	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1-Chlorohexane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2,4-Trimethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
tert-Butylbenzene	1.14	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1,1-Trichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1-Dichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
2-Chlorotoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Trichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
trans-1,2-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2-Dichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
2,2-Dichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Hexachlorobutadiene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Isopropylbenzene (Cumene)	6.88	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2-Dichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1-Dichloropropene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1,2-Trichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,3-Dichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2,3-Trichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2-Dichloroethane-D4 <surr></surr>	99.7	73-120		%	1	VMS10380	VXX19212	
Toluene-d8 <surr></surr>	99.8	80-120		%	1	VMS10380	VXX19212	
4-Bromofluorobenzene <surr></surr>	99.5	76-120		%	1	VMS10380	VXX19212	
Batch Information								
Analytical Batch: VMS10380		Prep Batch: VXX19212				Initial Prep	Nt./Vol.: 5 mL	
Analytical Method: SW8260B		Prep Method: SW5030B				Prep Extrac	t Vol.: 5 mL	
Analysis Date/Time: 02/16/09 18:59		Prep Date/Time: 02/16/09 11:48				Container ID:1090476006-D		
Dilution Factor: 1						Analyst: DS	Н	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Analytical Prep

Client Sample ID: **RHMWA01-WG14** SGS Ref. #: 1090476006 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 12:05 Receipt Date/Time: 02/06/09 11:00

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch Qualifiers
Acenaphthylene	ND	0.0543	0.0163		1	XMS4825	XXX20586
Acenaphthene	ND	0.0543	0.0163	ug/L ug/L	1	XMS4825 XMS4825	XXX20586
Fluorene	ND	0.0543	0.0163	ug/L	1	XMS4825 XMS4825	XXX20586
Phenanthrene	ND	0.0543	0.0163	ug/L	1	XMS4825 XMS4825	XXX20586
Anthracene	ND	0.0543	0.0163	0		XMS4825 XMS4825	XXX20586
Fluoranthene	ND	0.0543	0.0163	ug/L	1	XMS4825 XMS4825	XXX20586
Pyrene	ND	0.0543	0.0163	ug/L	1	XMS4825 XMS4825	XXX20586
Benzo(a)Anthracene	ND	0.0543	0.0163	ug/L	1	XMS4825 XMS4825	XXX20586
	ND	0.0543	0.0163	ug/L	1		XXX20586
Chrysene Benzo[b]Fluoranthene	ND	0.0543	0.0163	ug/L	1	XMS4825	XXX20586
	ND	0.0543	0.0163	ug/L	1	XMS4825	XXX20586
Benzo[k]fluoranthene	ND	0.0543	0.0163	ug/L	1	XMS4825	XXX20586
Benzo[a]pyrene				ug/L	1	XMS4825	
Indeno[1,2,3-c,d] pyrene	ND	0.0543	0.0163	ug/L	1	XMS4825	XXX20586
Dibenzo[a,h]anthracene	ND	0.0543	0.0163	ug/L	1	XMS4825	XXX20586
Benzo[g,h,i]perylene	ND	0.0543	0.0163	ug/L	1	XMS4825	XXX20586
Naphthalene	16.6	1.09	0.337	ug/L	10	XMS4828	XXX20586
1-Methylnaphthalene	22.8	0.543	0.163	ug/L	10	XMS4828	XXX20586
2-Methylnaphthalene	11.1	0.543	0.163	ug/L	10	XMS4828	XXX20586
Terphenyl-d14 <surr></surr>	87.2	50-135		%	1	XMS4825	XXX20586
Batch Information							
Analytical Batch: XMS4825		Prep Batch:	XXX20586			Initial Prep	Wt./Vol.: 920 mL
Analytical Method: 8270D SIMS		Prep Metho	d: SW3520C			Prep Extrac	t Vol.: 1 mL
Analysis Date/Time: 02/11/09 01:16		Prep Date/T	ime: 02/10/09 1	0:50		Container I	D:1090476006-I
Dilution Factor: 1						Analyst: JD	Н
Analytical Batch: XMS4828		Prep Batch:	XXX20586			Initial Prep	Wt./Vol.: 920 mL
Analytical Method: 8270D SIMS		Prep Metho	d: SW3520C			Prep Extrac	t Vol.: 1 mL
Analysis Date/Time: 02/12/09 20:29		Prep Date/T	ime: 02/10/09 1	0:50		Container I	D:1090476006-I
Dilution Factor: 10						Analyst: JD	H

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW01-WG14** SGS Ref. #: 1090476007 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 14:55 Receipt Date/Time: 02/06/09 11:00

Dissolved Metals by ICP/MS

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch	<u>Qualifiers</u>
Lead	ND	1.00	0.310	ug/L	5	MMS5820	MXX21362	2
Batch Information								
Analytical Batch: MMS5820		Prep Batch	: MXX21362			Initial Prep	Wt./Vol.: 50 n	nL
Analytical Method: SW6020		Prep Metho	od: SW3010A			Prep Extrac	t Vol.: 50 mL	
Analysis Date/Time: 02/17/09 11:54		Prep Date/	Time: 02/12/09 1	2:00		Container I	D:109047600)7-E
Dilution Factor: 5						Analyst: SC	L	

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW01-WG14** SGS Ref. #: 1090476007 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 14:55 Receipt Date/Time: 02/06/09 11:00

Volatile Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Gasoline Range Organics	14.4 J	100	10.0	ug/L	1	VFC9351	VXX19194
4-Bromofluorobenzene <surr></surr>	85.5	50-150		%	1	VFC9351	VXX19194
Batch Information							
Analytical Batch: VFC9351		Prep Batch	VXX19194			Initial Prep	Wt./Vol.: 5 mL
Analytical Method: SW8015C		Prep Metho	d: SW5030B			Prep Extrac	ct Vol.: 5 mL
Analysis Date/Time: 02/10/09 14:23		Prep Date/	Fime: 02/10/09 (09:30		Container I	D:1090476007-A
Dilution Factor: 1						Analyst: Hl	N

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW01-WG14** SGS Ref. #: 1090476007 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 14:55 Receipt Date/Time: 02/06/09 11:00

Semivolatile Organic Fuels Department

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Diesel Range Organics	0.387 J	0.449	0.0899	mg/L	1	XFC8449	XXX20585
5a Androstane <surr></surr>	77.9	50-150		%	1	XFC8449	XXX20585
Batch Information							
Analytical Batch: XFC8449		Prep Batch	XXX20585			Initial Prep	Wt./Vol.: 890 mL
Analytical Method: SW8015C		Prep Metho	d: SW3520C			Prep Extrac	ct Vol.: 1 mL
Analysis Date/Time: 02/11/09 16:51		Prep Date/	Time: 02/10/09 1	0:50		Container I	D:1090476007-F
Dilution Factor: 1						Analyst: KI	C

Print Date: 2/19/2009 10:58 am

Analytical Prep

Client Sample ID: **RHMW01-WG14** SGS Ref. #: 1090476007 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 14:55 Receipt Date/Time: 02/06/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

Parameter_	<u>Result</u>	PQL/CL	MDL	Units	DF	Batch	Batch Qualifiers
Farameter	Result			onits		Datch	<u>Datchi</u> <u>Quaimers</u>
Benzene	ND	0.400	0.120	ug/L	1	VMS10380	VXX19212
Toluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Ethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
n-Butylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,4-Dichlorobenzene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,2-Dichloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,3,5-Trimethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
4-Chlorotoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Chlorobenzene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
4-Methyl-2-pentanone (MIBK)	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212
cis-1,2-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
4-Isopropyltoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
cis-1,3-Dichloropropene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
n-Propylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Styrene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dibromomethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
trans-1,3-Dichloropropene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,4-Trichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Acetone	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212
1,1,2,2-Tetrachloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,2-Dibromo-3-chloropropane	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212
Methyl-t-butyl ether	ND	5.00	1.50	ug/L	1	VMS10380	VXX19212
Tetrachloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dibromochloromethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,3-Dichloropropane	ND	0.400	0.120	ug/L	1	VMS10380	VXX19212
1,2-Dibromoethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Carbon tetrachloride	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,1,1,2-Tetrachloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
Chloroform	ND	1.00	0.300	ug/L	1	VMS10380	VXX19212
Bromobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Chloromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,3-Trichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Bromomethane	ND	3.00	0.940	ug/L	1	VMS10380	VXX19212
Bromochloromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Vinyl chloride	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dichlorodifluoromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW01-WG14** SGS Ref. #: 1090476007 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 14:55 Receipt Date/Time: 02/06/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

						Analytical	Prep	
Parameter_	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch Qualifiers	
Chloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
sec-Butylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Bromodichloromethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212	
1,1-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
2-Butanone (MEK)	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212	
Methylene chloride	ND	5.00	1.00	ug/L	1	VMS10380	VXX19212	
Trichlorofluoromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
P & M -Xylene	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212	
Naphthalene	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212	
o-Xylene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Bromoform	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1-Chlorohexane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2,4-Trimethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
tert-Butylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1,1-Trichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1-Dichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
2-Chlorotoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Trichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
trans-1,2-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2-Dichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
2,2-Dichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Hexachlorobutadiene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Isopropylbenzene (Cumene)	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2-Dichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1-Dichloropropene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1,2-Trichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,3-Dichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2,3-Trichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2-Dichloroethane-D4 <surr></surr>	102	73-120		%	1	VMS10380	VXX19212	
Toluene-d8 <surr></surr>	99.1	80-120		%	1	VMS10380	VXX19212	
4-Bromofluorobenzene <surr></surr>	100	76-120		%	1	VMS10380	VXX19212	
Batch Information								
Analytical Batch: VMS10380		Prep Batch: VXX19212				Initial Prep	Vt./Vol.: 5 mL	
Analytical Method: SW8260B		Prep Method: SW5030B				Prep Extract Vol.: 5 mL		
Analysis Date/Time: 02/16/09 19:33		Prep Date/Time: 02/16/09 11:48				Container ID:1090476007-C		
Dilution Factor: 1						Analyst: DS	Н	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Client Sample ID: **RHMW01-WG14** SGS Ref. #: 1090476007 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 14:55 Receipt Date/Time: 02/06/09 11:00

Polynuclear Aromatics GC/MS

Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	<u>Analytical</u> Batch	<u>Prep</u> Batch Qualifiers
Acenaphthylene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Acenaphthene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Fluorene	0.0235 J	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Phenanthrene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Anthracene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Fluoranthene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Pyrene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Benzo(a)Anthracene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Chrysene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Benzo[b]Fluoranthene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Benzo[k]fluoranthene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Benzo[a]pyrene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Indeno[1,2,3-c,d] pyrene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Dibenzo[a,h]anthracene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Benzo[g,h,i]perylene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Naphthalene	0.173	0.110	0.0341	ug/L	1	XMS4825	XXX20586
1-Methylnaphthalene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
2-Methylnaphthalene	ND	0.0549	0.0165	ug/L	1	XMS4825	XXX20586
Terphenyl-d14 <surr></surr>	86.2	50-135		%	1	XMS4825	XXX20586
Batch Information							
Analytical Batch: XMS4825		Prep Batch	: XXX20586			Initial Prep	Wt./Vol.: 910 mL
Analytical Method: 8270D SIMS		Prep Method: SW3520C				Prep Extrac	t Vol.: 1 mL
Analysis Date/Time: 02/11/09 01:48		Prep Date/	Time: 02/10/09 1	0:50		Container II	D:1090476007-H
Dilution Factor: 1						Analyst: JD	Н

Print Date: 2/19/2009 10:58 am

Analytical Prep

Client Sample ID: **TB01-WG14** SGS Ref. #: 1090476008 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 08:05 Receipt Date/Time: 02/06/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

Paramotor	<u>Result</u>	PQL/CL	MDL	Units	DE	<u>Analytical</u> Batch	Ratch Qualifiers
Parameter	Result	<u>rql/cl</u>	MDL	onns	DF	<u>Batch</u>	Batch Qualifiers
Benzene	ND	0.400	0.120	ug/L	1	VMS10380	VXX19212
Toluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Ethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
n-Butylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,4-Dichlorobenzene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,2-Dichloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,3,5-Trimethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
4-Chlorotoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Chlorobenzene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
4-Methyl-2-pentanone (MIBK)	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212
cis-1,2-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
4-Isopropyltoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
cis-1,3-Dichloropropene	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
n-Propylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Styrene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dibromomethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
trans-1,3-Dichloropropene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,4-Trichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Acetone	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212
1,1,2,2-Tetrachloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,2-Dibromo-3-chloropropane	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212
Methyl-t-butyl ether	ND	5.00	1.50	ug/L	1	VMS10380	VXX19212
Tetrachloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dibromochloromethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
1,3-Dichloropropane	ND	0.400	0.120	ug/L	1	VMS10380	VXX19212
1,2-Dibromoethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Carbon tetrachloride	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,1,1,2-Tetrachloroethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212
Chloroform	ND	1.00	0.300	ug/L	1	VMS10380	VXX19212
Bromobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
1,2,3-Trichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Chloromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Bromomethane	ND	3.00	0.940	ug/L	1	VMS10380	VXX19212
Bromochloromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Vinyl chloride	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212
Dichlorodifluoromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

Print Date: 2/19/2009 10:58 am

Client Sample ID: **TB01-WG14** SGS Ref. #: 1090476008 Project ID: Red Hill BFSF Matrix: Water (Surface, Eff., Ground)

Collection Date/Time: 02/04/09 08:05 Receipt Date/Time: 02/06/09 11:00

Volatile Gas Chromatography/Mass Spectroscopy

	,					Analytical	Prep	
Parameter	<u>Result</u>	PQL/CL	MDL	<u>Units</u>	DF	Batch	Batch Qualifier	
Chloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
sec-Butylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Bromodichloromethane	ND	0.500	0.150	ug/L	1	VMS10380	VXX19212	
1,1-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
2-Butanone (MEK)	ND	10.0	3.10	ug/L	1	VMS10380	VXX19212	
Methylene chloride	ND	5.00	1.00	ug/L	1	VMS10380	VXX19212	
Trichlorofluoromethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
P & M -Xylene	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212	
Naphthalene	ND	2.00	0.620	ug/L	1	VMS10380	VXX19212	
o-Xylene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Bromoform	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1-Chlorohexane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2,4-Trimethylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
tert-Butylbenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1,1-Trichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1-Dichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
2-Chlorotoluene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Trichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
trans-1,2-Dichloroethene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2-Dichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
2,2-Dichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Hexachlorobutadiene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
Isopropylbenzene (Cumene)	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2-Dichloropropane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1-Dichloropropene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,1,2-Trichloroethane	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,3-Dichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2,3-Trichlorobenzene	ND	1.00	0.310	ug/L	1	VMS10380	VXX19212	
1,2-Dichloroethane-D4 <surr></surr>	101	73-120		%	1	VMS10380	VXX19212	
Toluene-d8 <surr></surr>	102	80-120		%	1	VMS10380	VXX19212	
4-Bromofluorobenzene <surr></surr>	98.9	76-120		%	1	VMS10380	VXX19212	
Batch Information								
Analytical Batch: VMS10380		Prep Batch	: VXX19212			Initial Prep	Nt./Vol.: 5 mL	
Analytical Method: SW8260B		Prep Metho	od: SW5030B			Prep Extrac	t Vol.: 5 mL	
Analysis Date/Time: 02/16/09 16:45		Prep Date/Time: 02/16/09 11:48				Container ID:1090476008-A		
Dilution Factor: 1						Analyst: DS	Н	

SGS North America Inc. Alaska Division 200 West Potter Drive Anchorage Alaska 99518 t (907) 562 2343 f (907) 561 5301 www.us.sgs.com

SGS Ref.#	882405	Method Blank	Pri	inted Da	ate/Time	02/19/2009	10:58
Client Name	The Environme	ental Company, Inc. (TEC)	Pre	ер	Batch	XXX20585	
Project Name/#	Red Hill BFSF				Method	SW3520C	
Matrix	Water (Surface	, Eff., Ground)			Date	02/10/2009	

QC results affect the following production samples:

1090476001, 1090476004, 1090476005, 1090476006, 1090476007

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Semivolatile	e Organic Fuels Depart	ment				
Diesel Range Organics		ND	0.400	0.0800	mg/L	02/11/09
Surrogates						
5a Androstane <	surr>	77.3	60-120		0⁄0	02/11/09
Batch	XFC8449					
Method	SW8015C					
Instrument	HP 6890 Series II FID SV D I	ર				

SGS Ref.# Client Name Project Name/# Matrix	882440 M The Environmental Red Hill BFSF Water (Surface, Eff				Printed Prep	Date/Time Batch Method Date	02/19/2009 10:58 XXX20586 SW3520C 02/10/2009
	following production samples		1090476007				
Parameter	, 10001, 10001, 10000,	Results	Reporting/Control Limit	MDL	Units		Analysis Date
Polynuclear A	romatics GC/MS						
Acenaphthylene		ND	0.0500	0.0150	ug/L		02/10/09
Acenaphthene		ND	0.0500	0.0150	ug/L		02/10/09
Fluorene		ND	0.0500	0.0150	ug/L		02/10/09
Phenanthrene		ND	0.0500	0.0150	ug/L		02/10/09
Anthracene		ND	0.0500	0.0150	ug/L		02/10/09
Fluoranthene		ND	0.0500	0.0150	ug/L		02/10/09
Pyrene		ND	0.0500	0.0150	ug/L		02/10/09
Benzo(a)Anthracen	ne	ND	0.0500	0.0150	ug/L		02/10/09
Chrysene		ND	0.0500	0.0150	ug/L		02/10/09
Benzo[b]Fluoranth	nene	ND	0.0500	0.0150	ug/L		02/10/09
Benzo[k]fluoranth	ene	ND	0.0500	0.0150	ug/L		02/10/09
Benzo[a]pyrene		ND	0.0500	0.0150	ug/L		02/10/09
Indeno[1,2,3-c,d] p	byrene	ND	0.0500	0.0150	ug/L		02/10/09
Dibenzo[a,h]anthra	-	ND	0.0500	0.0150	ug/L		02/10/09
Benzo[g,h,i]peryle	ne	ND	0.0500	0.0150	ug/L		02/10/09
Naphthalene		ND	0.100	0.0310	ug/L		02/10/09
1-Methylnaphthale	ene	ND	0.0500	0.0150	ug/L		02/10/09
2-Methylnaphthale		ND	0.0500	0.0150	ug/L		02/10/09
Surrogates							
Terphenyl-d14 <su< td=""><td>III></td><td>90.6</td><td>50-135</td><td></td><td>%</td><td></td><td>02/10/09</td></su<>	III>	90.6	50-135		%		02/10/09
Batch	XMS4825						
Method	8270D SIMS						
Instrument	HP 6890/5973 MS SVOA						

SGS Ref.#	882496	Method Blank	Printed	Date/Time	02/19/2009	10:58
Client Name	The Environme	ental Company, Inc. (TEC)	Prep	Batch	VXX19194	
Project Name/#	Red Hill BFSF			Method	SW5030B	
Matrix	Water (Surface	, Eff., Ground)		Date	02/10/2009	

QC results affect the following production samples:

1090476001, 1090476004, 1090476005, 1090476006, 1090476007

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Volatile Fue	els Department					
Gasoline Range Organics		ND	100	10.0	ug/L	02/10/09
Surrogates						
4-Bromofluorob	enzene <surr></surr>	85.6	50-150		%	02/10/09
Batch	VFC9351					
Method	SW8015C					
Instrument	HP 5890 Series II PIE	+HECD VBA				

Client NameThe Environmental Company, Inc. (TEC)PrepBatchMXX21362Project Name/#Red Hill BFSFMethodSW3010A	
Project Name/# Red Hill DESE Method SW3010A	
Project Name/# Red Hill BFSF SW3010A	
MatrixWater (Surface, Eff., Ground)Date02/12/2009	

QC results affect the following production samples:

 $1090476001,\,1090476004,\,1090476005,\,1090476006,\,1090476007$

Parameter		Results	Reporting/Control Limit	MDL	Units	Analysis Date
Metals by IC	CP/MS	ND	1.00	0.310	here	02/17/09
Lead Batch Method Instrument	MMS5820 SW6020 Perkin Elmer Sciex ICP-MS P		1.00	0.510	ug/L	0211107

SGS Ref.# Client Name Project Name/# Matrix	883391 The Environment Red Hill BFSF	1 57	ıc. (TEC)		Printed Prep	Date/Time Batch Method Date	02/19/2009 10:58 VXX19212 SW5030B 02/16/2009
QC results affect the follo	Water (Surface, I owing production samp 476004, 1090476005	les:	1090476007, 1090	476008			02100200
Parameter		Results	Reporting/Control Limit	MDL	Units		Analysis Date

Volatile Gas Chromatography/Mass Spectroscopy

SGS Ref.# Client Name Project Name/# Matrix	Red Hill BFS	Method Blank nental Company, In F ce, Eff., Ground)	c. (TEC)		Printed I Prep	Date/Time Batch Method Date	02/19/2009 10:58 VXX19212 SW5030B 02/16/2009
Parameter	Water (Surray	Results	Reporting/Control Limit	MDL	Units		Analysis Date
Volatile Gas Chi	romatography	/Mass Spectro					
Benzene		ND	0.400	0.120	ug/L		02/16/09
Toluene		ND	1.00	0.310	ug/L		02/16/09
Ethylbenzene		ND	1.00	0.310	ug/L		02/16/09
n-Butylbenzene		ND	1.00	0.310	ug/L		02/16/09
1,4-Dichlorobenzene		ND	0.500	0.150	ug/L		02/16/09
1,2-Dichloroethane		ND	0.500	0.150	ug/L		02/16/09
1,3,5-Trimethylbenzer	ne	ND	1.00	0.310	ug/L		02/16/09
4-Chlorotoluene		ND	1.00	0.310	ug/L		02/16/09
Chlorobenzene		ND	0.500	0.150	ug/L		02/16/09
4-Methyl-2-pentanone	(MIBK)	ND	10.0	3.10	ug/L		02/16/09
cis-1,2-Dichloroethen		ND	1.00	0.310	ug/L		02/16/09
4-Isopropyltoluene		ND	1.00	0.310	ug/L		02/16/09
cis-1,3-Dichloroprope	ne	ND	0.500	0.150	ug/L		02/16/09
n-Propylbenzene		ND	1.00	0.310	ug/L		02/16/09
Styrene		ND	1.00	0.310	ug/L		02/16/09
Dibromomethane		ND	1.00	0.310	ug/L		02/16/09
trans-1,3-Dichloropro	nene	ND	1.00	0.310	ug/L		02/16/09
1,2,4-Trichlorobenzen	-	ND	1.00	0.310	ug/L		02/16/09
Acetone	•	ND	10.0	3.10	ug/L		02/16/09
1,1,2,2-Tetrachloroeth	ane	ND	0.500	0.150	ug/L		02/16/09
1,2-Dibromo-3-chloro		ND	2.00	0.620	ug/L		02/16/09
Methyl-t-butyl ether	propune	ND	5.00	1.50	ug/L		02/16/09
Tetrachloroethene		ND	1.00	0.310	ug/L		02/16/09
Dibromochloromethar	1e	ND	0.500	0.150	ug/L		02/16/09
1,3-Dichloropropane		ND	0.400	0.120	ug/L		02/16/09
1,2-Dibromoethane		ND	1.00	0.310	ug/L		02/16/09
Carbon tetrachloride		ND	1.00	0.310	ug/L		02/16/09
1,1,1,2-Tetrachloroeth	ane	ND	0.500	0.150	ug/L		02/16/09
Chloroform	lane	ND	1.00	0.300	ug/L		02/16/09
Bromobenzene		ND	1.00	0.310	ug/L ug/L		02/16/09
Chloromethane		ND	1.00	0.310	ug/L		02/16/09
1,2,3-Trichloropropan	2	ND	1.00	0.310	ug/L ug/L		02/16/09
	e	ND	3.00	0.940			02/16/09
Bromomethane		ND	1.00		ug/L		02/16/09
Bromochloromethane		ND ND	1.00	0.310 0.310	ug/L		02/16/09
Vinyl chloride			1.00		ug/L		02/16/09
Dichlorodifluorometha	ane	ND		0.310	ug/L		02/16/09
Chloroethane		ND	1.00	0.310	ug/L		02/16/09
sec-Butylbenzene		ND	1.00	0.310	ug/L		
Bromodichloromethan	ne	ND	0.500	0.150	ug/L		02/16/09

SGS Ref.# Client Name Project Name/#	883391 M The Environmental Red Hill BFSF	lethod Blank Company, Ir	nc. (TEC)		Printed Da Prep	Batch Method	02/19/2009 10:58 VXX19212 SW5030B
Matrix	Water (Surface, Eff	., Ground)				Date	02/16/2009
Parameter		Results	Reporting/Control Limit	MDL	Units		Analysis Date
Volatile Gas	Chromatography/Mas	s Spectro	oscopy				
1,1-Dichloroether	ne	ND	1.00	0.310	ug/L		02/16/09
2-Butanone (MEI	K)	ND	10.0	3.10	ug/L		02/16/09
Methylene chlorid		ND	5.00	1.00	ug/L		02/16/09
Trichlorofluorom		ND	1.00	0.310	ug/L		02/16/09
P & M -Xylene		ND	2.00	0.620	ug/L		02/16/09
Naphthalene		ND	2.00	0.620	ug/L		02/16/09
o-Xylene		ND	1.00	0.310	ug/L		02/16/09
Bromoform		ND	1.00	0.310	ug/L		02/16/09
1-Chlorohexane		ND	1.00	0.310	ug/L		02/16/09
1,2,4-Trimethylbe	enzene	ND	1.00	0.310	ug/L		02/16/09
tert-Butylbenzene		ND	1.00	0.310	ug/L		02/16/09
1,1,1-Trichloroetl	nane	ND	1.00	0.310	ug/L		02/16/09
1,1-Dichloroetha	ne	ND	1.00	0.310	ug/L		02/16/09
2-Chlorotoluene		ND	1.00	0.310	ug/L		02/16/09
Trichloroethene		ND	1.00	0.310	ug/L		02/16/09
trans-1,2-Dichlor	oethene	ND	1.00	0.310	ug/L		02/16/09
1,2-Dichlorobenz	ene	ND	1.00	0.310	ug/L		02/16/09
2,2-Dichloroprop	ane	ND	1.00	0.310	ug/L		02/16/09
Hexachlorobutadi	ene	ND	1.00	0.310	ug/L		02/16/09
Isopropylbenzene	(Cumene)	ND	1.00	0.310	ug/L		02/16/09
1,2-Dichloroprop		ND	1.00	0.310	ug/L		02/16/09
1,1-Dichloroprop		ND	1.00	0.310	ug/L		02/16/09
1,1,2-Trichloroetl	nane	ND	1.00	0.310	ug/L		02/16/09
1,3-Dichlorobenz		ND	1.00	0.310	ug/L		02/16/09
1,2,3-Trichlorobe	nzene	ND	1.00	0.310	ug/L		02/16/09
Surrogates							
1,2-Dichloroethai	ne-D4 <surr></surr>	101	73-120		%		02/16/09
Toluene-d8 <surr< td=""><td>></td><td>101</td><td>80-120</td><td></td><td>%</td><td></td><td>02/16/09</td></surr<>	>	101	80-120		%		02/16/09
4-Bromofluorobe	nzene <surr></surr>	103	76-120		%		02/16/09
Batch	VMS10380						
Method	SW8260B						
Instrument	HP 5890 Series II MS1 VI	Γ Δ					

Instrument HP 5890 Series II MS1 VJA

SGS Ref.#	882441 Lab Control Sample	Printed	Date/Time	02/19/2009	10:58
		Prep	Batch	XXX20586	
Client Name	The Environmental Company, Inc. (TEC)		Method	SW3520C	
Project Name/#	Red Hill BFSF		Date	02/10/2009	
Matrix	Water (Surface, Eff., Ground)				
OC results affect the f	following production samples:				

QC results affect the following production samples: 1090476001. 1090476004. 1090476005. 1090476006, 1090476007

Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Polynuclear Aromatics GC/M	<u>4S</u>							
Acenaphthylene	LCS	0.259	52	(50-105)			0.5 ug/L	02/10/2009
Acenaphthene	LCS	0.253	51	(45-110)			0.5 ug/L	02/10/2009
Fluorene	LCS	0.271	54	(50-110)			0.5 ug/L	02/10/2009
Phenanthrene	LCS	0.288	58	(50-115)			0.5 ug/L	02/10/2009
Anthracene	LCS	0.282	56	(55-110)			0.5 ug/L	02/10/2009
Fluoranthene	LCS	0.374	75	(55-125)			0.5 ug/L	02/10/2009
Pyrene	LCS	0.364	73	(50-130)			0.5 ug/L	02/10/2009
Benzo(a)Anthracene	LCS	0.363	73	(55-120)			0.5 ug/L	02/10/2009
Chrysene	LCS	0.360	72	(55-120)			0.5 ug/L	02/10/2009
Benzo[b]Fluoranthene	LCS	0.382	76	(46-130)			0.5 ug/L	02/10/2009
Benzo[k]fluoranthene	LCS	0.357	71	(60-125)			0.5 ug/L	02/10/2009
Benzo[a]pyrene	LCS	0.364	73	(55-120)			0.5 ug/L	02/10/2009
Indeno[1,2,3-c,d] pyrene	LCS	0.361	72	(45-125)			0.5 ug/L	02/10/2009
Dibenzo[a,h]anthracene	LCS	0.361	72	(41-140)			0.5 ug/L	02/10/2009
Benzo[g,h,i]perylene	LCS	0.361	72	(46-125)			0.5 ug/L	02/10/2009
Naphthalene	LCS	0.252	50	(42-100)			0.5 ug/L	02/10/2009
1-Methylnaphthalene	LCS	0.243	49	(46-115)			0.5 ug/L	02/10/2009
2-Methylnaphthalene	LCS	0.233	47	(45-105)			0.5 ug/L	02/10/2009
Surrogates								
Terphenyl-d14 <surr></surr>	LCS		84	(50-135)				02/10/2009

SGS Ref.#	882441 Lab Control Sample				Printed Prep	Date/Time Batch	02/19/2009 XXX20586	10:58
Client Name Project Name/# Matrix	The Environmental Company, Inc. (TEC) Red Hill BFSF Water (Surface, Eff., Ground)					Method Date	SW3520C 02/10/2009	
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date

Polynuclear Aromatics GC/MS

 Batch
 XMS4825

 Method
 8270D SIMS

 Instrument
 HP 6890/5973 MS SVOA

SGS Ref.# Client Name Project Name/# Matrix	 882497 Lab Control Sample 882498 Lab Control Sample Duplicate The Environmental Company, Inc. (TEC) Red Hill BFSF Water (Surface, Eff., Ground) 					Printed Prep	l Date/Time Batch Method Date	02/19/2009 VXX19194 SW5030B 02/10/2009	10:58
QC results affect the fo 1090476001, 109	01	1	476006, 10	90476007					
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Fuels	Department								
Gasoline Range Orga	nics	LCS	192	96	(79-108)			200 ug/L	02/10/2009
		LCSD	191	95		1	(< 20)	200 ug/L	02/10/2009
Surrogates									

9				
4-Bromofluorobenzene <surr></surr>	LCS	91 (50-150)	02/10/2009
	LCSD	90	1	02/10/2009

Batch	VFC9351
Method	SW8015C
Instrument	HP 5890 Series II PID+HECD VBA

SGS Ref.# Client Name Project Name/# Matrix QC results affect the fol	882789 I The Environ Red Hill BFS Water (Surfa	ice, Eff., Grou n samples:	ample Dup any, Inc. (and)	TEC)		Printed Prep	Date/Time Batch Method Date	02/19/2009 XXX20585 SW3520C 02/10/2009	10:58
1090476001, 1090	4/6004, 10904	/6005, 10904							
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Semivolatile Or	ganic Fuels	Departme	nt						
Diesel Range Organic	S	LCS	4.47	90	(75-125)			5 mg/L	02/11/2009
		LCSD	4.27	85		5	(< 20)	5 mg/L	02/11/2009
Surrogates									
5a Androstane <surr></surr>		LCS		88	(60-120)				02/11/2009
		LCSD		84		4			02/11/2009

Batch	XFC8449
Method	SW8015C
Instrument	HP 6890 Series II FID SV D R

SGS Ref.# Client Name Project Name/# Matrix	882937 The Enviror Red Hill BF Water (Surf	SF	pany, Inc. (TEC)		Printec Prep	l Date/Time Batch Method Date	02/19/2009 MXX21362 SW3010A 02/12/2009	10:58
-	ne following production 1090476004, 10904	1	476006, 10	90476007					
Parameter			QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Metals by ICI	P/MS								
Lead		LCS	986	99	(80-120)			1000 ug/L	02/17/2009
Batch Method	MMS5820 SW6020								

Instrument Perkin Elmer Sciex ICP-MS P3

SGS Ref.#	883392 I	Lab Control Sample			Printe	d Date/Time	02/19/2009	10:58
Client Name Project Name/# Matrix	The Environ Red Hill BF	Lab Control Sample Dup imental Company, Inc. (SF ace, Eff., Ground)			Prep	Batch Method Date	VXX19212 SW5030B 02/16/2009	
QC results affect the 1090476001, 10	01	n samples: 76005, 1090476006, 10	90476007, 10	90476008				
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date

Volatile Gas Chromatography/Mass Spectroscopy

Client Name Project Name/#	883392Lab Control S883393Lab Control SThe Environmental CompRed Hill BFSF	Sample Duj pany, Inc. (Printe Prep	ed Date/Time Batch Method Date	02/19/2009 VXX19212 SW5030B 02/16/2009	10:58
Matrix	Water (Surface, Eff., Gro	und) QC	Pct	LCS/LCSD		RPD	Spiked	Analysis
Parameter		Results	Recov	Limits	RPD	Limits	Amount	Date
Volatile Gas Chro	matography/Mass Sp	ectrosc	ору					
Benzene	LCS	31.1	104	(80-120)			30 ug/L	02/16/2009
	LCSD	29.2	97		7	(< 20)	30 ug/L	02/16/2009
Toluene	LCS	30.7	102	(77-120)			30 ug/L	02/16/2009
	LCSD	30.6	102		0	(< 20)	30 ug/L	02/16/2009
Ethylbenzene	LCS	32.9	110	(80-120)			30 ug/L	02/16/2009
	LCSD	32.1	107		2	(< 20)	30 ug/L	02/16/2009
n-Butylbenzene	LCS	33.0	110	(80-124)			30 ug/L	02/16/2009
2	LCSD	31.9	106		3	(< 20)	30 ug/L	02/16/2009
1,4-Dichlorobenzene	LCS	30.9	103	(80-120)			30 ug/L	02/16/2009
,, , , , , , , , , , , , , , , , , , ,	LCSD	30.9	103	(00 120)	0	(< 20)	30 ug/L 30 ug/L	02/16/2009
1,2-Dichloroethane	LCS	31.5	105	(80-129)			30 ug/L	02/16/2009
1,2-Diemoroethane	LCSD		99	(00-12))	6	(< 20)	30 ug/L 30 ug/L	02/16/2009
1.2.5 Trimethylhonzone	LCS	32.6	109	(90,129)			20 / 1	02/16/2000
1,3,5-Trimethylbenzene	LCS		109	(80-128)	2	(< 20)	30 ug/L 30 ug/L	02/16/2009 02/16/2009
							-	
4-Chlorotoluene	LCS LCSD	31.2	104 104	(79-128)	0	(< 20)	30 ug/L 30 ug/L	02/16/2009 02/16/2009
	LCSD	51.2	104		0	(< 20)	50 ug/L	02/10/2009
Chlorobenzene	LCS	32.5	108	(80-120)			30 ug/L	02/16/2009
	LCSD	31.8	106		2	(< 20)	30 ug/L	02/16/2009
4-Methyl-2-pentanone (M	(IBK) LCS	91.4	102	(69-134)			90 ug/L	02/16/2009
	LCSD	86.8	97		5	(< 20)	90 ug/L	02/16/2009
cis-1,2-Dichloroethene	LCS	32.5	108	(80-125)			30 ug/L	02/16/2009
	LCSD		105	. /	3	(< 20)	30 ug/L	02/16/2009
4-Isopropyltoluene	LCS	32.5	108	(80-125)			30 ug/L	02/16/2009
	LCSD		107	()	2	(< 20)	30 ug/L 30 ug/L	02/16/2009
cis-1,3-Dichloropropene	LCS	32.2	107	(80-120)			20/1	02/16/2000
cis-1,5-Dicilioropropene	LCS		107	(00-120)	4	(< 20)	30 ug/L 30 ug/L	02/16/2009 02/16/2009
			105		·	(*20)	50 ug/L	52/10/2007
n-Propylbenzene	LCS	32.0	107	(80-129)	1		30 ug/L	02/16/2009
	LCSD	31.8	106		1	(< 20)	30 ug/L	02/16/2009

Client Name	883392 Lab Contro 883393 Lab Contro The Environmental Co Red Hill BFSF	l Sample Du	-		Printe Prep	ed Date/Time Batch Method Date	02/19/2009 VXX19212 SW5030B 02/16/2009	10:58
Matrix	Water (Surface, Eff., C							
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatile Gas Chro	matography/Mass	Spectrosc	opy					
Styrene	LCS	33.3	111	(80-120)			30 ug/L	02/16/2009
	LCS	D 32.7	109		2	(< 20)	30 ug/L	02/16/2009
Dibromomethane	LCS	32.8	109	(80-120)			30 ug/L	02/16/2009
	LCS	D 31.2	104		5	(< 20)	30 ug/L	02/16/2009
trans-1,3-Dichloroproper	le LCS	29.1	97	(80-124)			30 ug/L	02/16/2009
	LCS	D 29.2	97		0	(< 20)	30 ug/L	02/16/2009
1,2,4-Trichlorobenzene	LCS	32.1	107	(80-120)			30 ug/L	02/16/2009
	LCS	D 31.6	105		2	(< 20)	30 ug/L	02/16/2009
Acetone	LCS	100	111	(50-135)			90 ug/L	02/16/2009
	LCS	D 89.3	99		12	(< 20)	90 ug/L	02/16/2009
1,1,2,2-Tetrachloroethan	e LCS	30.7	102	(76-123)			30 ug/L	02/16/2009
	LCS	D 30.3	101		1	(< 20)	30 ug/L	02/16/2009
1,2-Dibromo-3-chloropro	opane LCS	30.5	102	(73-130)			30 ug/L	02/16/2009
	LCS	D 29.7	99		2	(< 20)	30 ug/L	02/16/2009
Methyl-t-butyl ether	LCS	38.7	86	(80-120)			45 ug/L	02/16/2009
	LCS	D 39.3	87		1	(< 20)	45 ug/L	02/16/2009
Tetrachloroethene	LCS	32.9	110	(79-122)			30 ug/L	02/16/2009
	LCS	D 31.6	105		4	(< 20)	30 ug/L	02/16/2009
Dibromochloromethane	LCS	29.9	100	(80-120)			30 ug/L	02/16/2009
	LCS	D 29.5	98		1	(< 20)	30 ug/L	02/16/2009
1,3-Dichloropropane	LCS	32.1	107	(80-121)			30 ug/L	02/16/2009
		D 31.8	106		1	(< 20)	30 ug/L	02/16/2009
1,2-Dibromoethane	LCS	32.2	107	(80-120)			30 ug/L	02/16/2009
		D 31.6	105	. ,	2	(< 20)	30 ug/L	02/16/2009
Carbon tetrachloride	LCS	35.2	117	(80-126)			30 ug/L	02/16/2009
		D 33.2	111	、 - /	6	(< 20)	30 ug/L	02/16/2009
1,1,1,2-Tetrachloroethan	e LCS	29.7	99	(80-120)			30 ug/L	02/16/2009

SGS Ref.# Client Name	883392 Lab Control S 883393 Lab Control S The Environmental Comp	Sample Du	-		Printe Prep	ed Date/Time Batch Method	02/19/2009 VXX19212 SW5030B	10:58
Project Name/# Matrix	Red Hill BFSF Water (Surface, Eff., Gro	ound)				Date	02/16/2009	
Parameter		QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date
Volatilo Cas Chr	omatography/Mass Sp	oatrosa						
Volatile Gas chi							2 0 /7	
	LCSD	30.1	100		2	(< 20)	30 ug/L	02/16/2009
Chloroform	LCS	31.5	105	(80-124)			30 ug/L	02/16/2009
	LCSD	29.8	99		5	(< 20)	30 ug/L	02/16/2009
Bromobenzene	LCS	29.9	100	(80-120)			30 ug/L	02/16/2009
Diomobelizene	LCSD		100	(00 120)	2	(< 20)	30 ug/L 30 ug/L	02/16/2009
Chloromethane	LCS	48.5	162 *	(67-125)	15	(< 20)	30 ug/L	02/16/2009
	LCSD	56.4	188 *		15	(< 20)	30 ug/L	02/16/2009
1,2,3-Trichloropropane	LCS	32.2	107	(80-120)			30 ug/L	02/16/2009
	LCSD	31.3	104		3	(< 20)	30 ug/L	02/16/2009
Bromomethane	LCS	25.3	84	(30-140)			30 ug/L	02/16/2009
	LCSD		102	(50110)	19	(< 20)	30 ug/L 30 ug/L	02/16/2009
Bromochloromethane	LCS	34.1	114	(77-129)	F	(< 20)	30 ug/L	02/16/2009
	LCSD	32.4	108		5	(< 20)	30 ug/L	02/16/2009
Vinyl chloride	LCS	44.4	148 *	(72-145)			30 ug/L	02/16/2009
	LCSD	44.4	148 *		0	(< 20)	30 ug/L	02/16/2009
Dichlorodifluorometha	ne LCS	56.6	189 *	(62-153)			30 ug/L	02/16/2009
Diemoroumuorometiu	LCSD		183 *	(02 155)	3	(< 20)	30 ug/L 30 ug/L	02/16/2009
							-	
Chloroethane	LCS	30.3	101	(67-133)			30 ug/L	02/16/2009
	LCSD	27.6	92		9	(< 20)	30 ug/L	02/16/2009
sec-Butylbenzene	LCS	31.6	105	(80-120)			30 ug/L	02/16/2009
	LCSD	31.4	105		1	(<20)	30 ug/L	02/16/2009
Bromodichloromethane	LCS	34.1	114	(80-120)			30 ug/L	02/16/2009
Distributerior of the data	LCSD		107	(00-120)	7	(< 20)	30 ug/L 30 ug/L	02/16/2009
						× /		
1,1-Dichloroethene	LCS	35.1	117	(76-130)			30 ug/L	02/16/2009
	LCSD	32.0	107		9	(< 20)	30 ug/L	02/16/2009
2-Butanone (MEK)	LCS	103	115	(66-136)			90 ug/L	02/16/2009
	LCSD		104		10	(< 20)	90 ug/L	02/16/2009

SGS Ref.# Client Name Project Name/#	883392 Lab Control S 883393 Lab Control S The Environmental Comp Red Hill BFSF	ample Duj pany, Inc. (Printe Prep	ed Date/Time Batch Method Date	02/19/2009 VXX19212 SW5030B 02/16/2009	10:58	
Matrix	Water (Surface, Eff., Gro	QC	Pct	LCS/LCSD		RPD	Spiked	Analysis	
Parameter		Results	Recov	Limits	RPD	Limits	Amount	Date	
Volatile Gas Chro Methylene chloride	omatography/Mass Sp	32.9	<u>ору</u> 110	(63-131)			20/I	02/16/2009	
	LCSD		105	(05-151)	5	(< 20)	30 ug/L 30 ug/L	02/16/2009	
Trichlorofluoromethane	LCS	37.7	126	(68-145)			30 ug/L	02/16/2009	
	LCSD	33.9	113		11	(< 20)	30 ug/L	02/16/2009	
9 & M -Xylene	LCS	68.1	113	(80-120)			60 ug/L	02/16/2009	
	LCSD	66.4	111		2	(< 20)	60 ug/L	02/16/2009	
Naphthalene	LCS	31.0	103	(75-120)			30 ug/L	02/16/2009	
	LCSD	30.9	103		0	(< 20)	30 ug/L	02/16/2009	
o-Xylene	LCS	33.4	111	(80-120)			30 ug/L	02/16/2009	
	LCSD	32.7	109		2	(< 20)	30 ug/L	02/16/2009	
Bromoform	LCS	31.9	106	(80-120)			30 ug/L	02/16/2009	
	LCSD	30.9	103		3	(< 20)	30 ug/L	02/16/2009	
-Chlorohexane	LCS	49.9	111	(70-125)			45 ug/L	02/16/2009	
	LCSD	47.8	106		4	(< 20)	45 ug/L	02/16/2009	
,2,4-Trimethylbenzene		31.6	105	(80-125)			30 ug/L	02/16/2009	
	LCSD	31.3	104		1	(< 20)	30 ug/L	02/16/2009	
ert-Butylbenzene	LCS	31.4	105	(80-122)			30 ug/L	02/16/2009	
	LCSD	30.9	103		1	(< 20)	30 ug/L	02/16/2009	
,1,1-Trichloroethane	LCS	32.7	109	(80-122)			30 ug/L	02/16/2009	
	LCSD	31.0	103		5	(< 20)	30 ug/L	02/16/2009	
,1-Dichloroethane	LCS	32.6	109	(80-120)			30 ug/L	02/16/2009	
	LCSD	30.7	102		6	(< 20)	30 ug/L	02/16/2009	
-Chlorotoluene	LCS	30.7	102	(80-125)			30 ug/L	02/16/2009	
	LCSD	31.0	103		1	(< 20)	30 ug/L	02/16/2009	
Trichloroethene	LCS	30.8	103	(80-125)			30 ug/L	02/16/2009	
	LCSD	28.8	96		7	(< 20)	30 ug/L	02/16/2009	
rans-1,2-Dichloroethen	e LCS	31.8	106	(79-132)			30 ug/L	02/16/2009	
	LCSD	31.1	104		2	(< 20)	30 ug/L	02/16/2009	

Parameter Results Recov Limits RPD Limits Amount Volatile Gas Chromatography/Mass Spectroscopy I.2-Dichlorobenzene LCS 30.6 102 (80-120) 0 (<20) 30 ug/L 02/ 2,2-Dichloropropane LCS 33.4 111 (80-132) 0 (<20) 30 ug/L 02/ 2,2-Dichloropropane LCS 33.4 111 (80-132) 30 ug/L 02/ Hexachlorobutadiene LCS 28.4 95 (77-125) 30 ug/L 02/ Isopropylbenzene (Curnene) LCS 33.4 111 (80-121) 30 ug/L 02/ 1,2-Dichloropropane LCS 33.4 111 (80-121) 30 ug/L 02/ Isopropylbenzene (Curnene) LCS 33.0 110 (80-121) 30 ug/L 02/ 1,2-Dichloropropane LCS 33.0 110 (80-122) 30 ug/L 02/ 1,1-Dichloropropene LCS 33.0 110 (80-122) 30 ug/L/	10:58		02/19/2009 VXX19212 SW5030B	Date/Time Batch Method	Printed Prep		 883392 Lab Control Sample 883393 Lab Control Sample Duplicate The Environmental Company, Inc. (TEC) Pad Hill PESE 				
Parameter QC Results Pet Recov LCSLCSD Limits RPD RPD RPD Spiked Amount A volatile Gas Chromatography/Mass Spectroscopy Initian Spiked A A 1.2-Dichlorobenzene LCS 30.6 102 (80-120) 30 ug/L 02/2 2.2-Dichloropropane LCS 33.4 111 (80-132) 30 ug/L 02/2 Hexachlorobutadiene LCS 28.4 95 (77-125) 30 ug/L 02/2 Isopropylbenzene (Curnene) LCS 33.4 111 (80-121) 30 ug/L 02/2 1,2-Dichloropropane LCS 33.4 111 (80-121) 30 ug/L 02/2 Isopropylbenzene (Curnene) LCS 33.4 111 (80-121) 30 ug/L 02/2 1,2-Dichloropropane LCS 33.0 110 (80-121) 30 ug/L 02/2 1,2-Dichloropropane LCS 33.0 110 (80-122) 30 ug/L 02/2 1,1-Dichloropropane LCS			02/16/2009	Date							-
Parameter Results Recov Limits RPD Limits Amount Volatile Gas Chromatography/Mass Spectroscopy I.CS 30.6 102 (80-120) 0 (<20) 30 ug/L 02/L 1,2-Dichlorobenzene LCS 30.4 111 (80-132) 0 (<20) 30 ug/L 02/L 2,2-Dichloropropane LCS 33.4 111 (80-132) 30 ug/L 02/L 4Exachlorobutadiene LCS 28.4 95 (77-125) 30 ug/L 02/L Isopropylbenzene (Cumene) LCS 33.4 111 (80-121) 30 ug/L 02/L 1,2-Dichloropropane LCS 33.0 110 (80-122) 30 ug/L 02/L								und)	urface, Eff., Gro	Water (S	Matrix
1,2-Dichlorobenzene LCS 30.6 102 $(80-120)$ 0 (<20) 30 ug/L 02/ 2,2-Dichloropropane LCS 33.4 111 $(80-132)$ 5 (<20) 30 ug/L 02/ 2,2-Dichloropropane LCS 33.4 111 $(80-132)$ 5 (<20) 30 ug/L 02/ Hexachlorobutadiene LCS 28.4 95 $(77-125)$ 1 (<20) 30 ug/L 02/ Isopropylbenzene (Cumene) LCS 33.4 111 $(80-121)$ 30 ug/L 02/ 1,2-Dichloropropane LCS 33.4 111 $(80-121)$ 30 ug/L 02/ 1sopropylbenzene (Cumene) LCS 33.0 110 $(80-121)$ 3 (<20) 30 ug/L 02/ 1,2-Dichloropropane LCS 33.0 110 $(80-122)$ (<20) 30 ug/L 02/ 1,1-Dichloropropene LCS 33.0 110 $(80-122)$ (<20) 30 ug/L 02/ 1,1,2-Trichloroptenzene LCS 31.5 105 (<20) 30 ug/L	nalysis Date		•		RPD						Parameter
LCSD 30.5 102 0 (<20) 30 ug/L $02/$ $2,2$ -DichloropropaneLCS 33.4 111 $(80-132)$ 5 (<20) 30 ug/L $02/$ $LCSD$ 31.9 106 5 (<20) 30 ug/L $02/$ HexachlorobutadieneLCS 28.4 95 $(77-125)$ 1 (<20) 30 ug/L $02/$ Isopropylbenzene (Cumene)LCS 33.4 111 $(80-121)$ 3 (<20) 30 ug/L $02/$ Isopropylbenzene (Cumene)LCS 33.0 110 $(80-121)$ 3 (<20) 30 ug/L $02/$ $1,2$ -DichloropropaneLCS 33.0 110 $(80-121)$ 5 (<20) 30 ug/L $02/$ $1,1$ -DichloropropaneLCS 33.0 110 $(80-121)$ 5 (<20) 30 ug/L $02/$ $1,1$ -DichloropropaneLCS 33.0 110 $(80-122)$ 5 (<20) 30 ug/L $02/$ $1,1,2$ -TrichloroethaneLCS 32.1 107 $(77-120)$ 1 (<20) 30 ug/L $02/$ $1,2,3$ -TrichlorobenzeneLCS 30.9 103 $(77-120)$ 2 (<20) 30 ug/L $02/$ $1,2,3$ -TrichlorobenzeneLCS 30.9 103 $(77-120)$ 2 (<20) 30 ug/L $02/$ $1,2,3$ -TrichlorobenzeneLCS 30.9 103 $(77-120$							opy	ectrosc	phy/Mass Sp	s Chromatogra	Volatile Gas Ch
2,2-DichloropropaneLCS 33.4 LCSD 111 106 $(80-132)$ 5 30 (<20) 30 ug/L $02/$ $02/$ HexachlorobutadieneLCS 28.4 LCSD 95 28.6 $(77-125)$ 1 (<20) 30 ug/L $02/$ $02/$ Isopropylbenzene (Curnene)LCS LCSD 33.4 22.3 111 108 $(80-121)$ 30 (<20) 30 ug/L $02/$ $02/$ I,2-DichloropropaneLCS LCSD 33.4 31.4 111 105 $(80-121)$ 5 (<20) 30 ug/L $02/$ $02/$ 1,1-DichloropropaneLCS LCSD 33.0 31.5 110 105 $(80-121)$ 5 (<20) 30 ug/L $02/$ $02/$ 1,1-DichloropropaneLCS 	16/2009		30 ug/L			(80-120)	102	30.6	LCS	zene	1,2-Dichlorobenzene
LCSD 31.91065(<20)30 ug/L02/HexachlorobutadieneLCS28.495 $(77-125)$ 30 ug/L02/Isopropylbenzene (Cumene)LCS33.4111 $(80-121)$ 30 ug/L02/Isopropylbenzene (Cumene)LCS33.4111 $(80-121)$ 30 ug/L02/1,2-DichloropropaneLCS33.0110 $(80-121)$ 30 ug/L02/1,1-DichloropropaneLCS33.0110 $(80-122)$ 30 ug/L02/1,1-DichloropropaneLCS33.0110 $(80-122)$ 30 ug/L02/1,1-DichloropropaneLCS31.51055 (<20) 30 ug/L02/1,1-DichloropropaneLCS31.1107 $(77-120)$ 30 ug/L02/1,1-DichloroptopaneLCS31.4105 $(80-120)$ 30 ug/L02/1,1-DichloroptopaneLCS31.4105 $(80-120)$ 30 ug/L02/1,1,2-TrichloroethaneLCS31.4105 $(80-120)$ 30 ug/L02/1,3-DichlorobenzeneLCS31.1104 (<20) 30 ug/L02/1,2,3-TrichlorobenzeneLCS30.9103 $(77-120)$ 30 ug/L02/1,2,3-TrichlorobenzeneLCS30.9103 $(<77-120)$ 30 ug/L02/1,2,3-TrichlorobenzeneLCS30.9103 $(<77-120)$ 30 ug/L02/1,2,3-TrichlorobenzeneLCS30.21012 (<20) 3	16/2009		30 ug/L	(< 20)	0		102	30.5	LCSD		
HexachlorobutadieneLCS 28.4 95 $(77-125)$ 30 ug/L $02/$ Isopropylbenzene (Cumene)LCS 33.4 111 $(80-121)$ 30 ug/L $02/$ Isopropylbenzene (Cumene)LCS 33.4 111 $(80-121)$ 30 ug/L $02/$ 1,2-DichloropropaneLCS 33.0 110 $(80-121)$ 30 ug/L $02/$ 1,1-DichloropropaneLCS 33.0 110 $(80-121)$ 5 (<20) 30 ug/L $02/$ 1,1-DichloropropeneLCS 33.0 110 $(80-122)$ 5 (<20) 30 ug/L $02/$ 1,1,2-TrichloroethaneLCS 32.1 107 $(77-120)$ 1 (<20) 30 ug/L $02/$ 1,3-DichlorobenzeneLCS 31.4 105 $(80-120)$ 1 (<20) 30 ug/L $02/$ 1,2,3-TrichlorobenzeneLCS 30.9 103 $(77-120)$ 1 (<20) 30 ug/L $02/$ 1,2,3-TrichlorobenzeneLCS 30.9 103 $(77-120)$ 2 (<20) 30 ug/L $02/$	16/2009		30 ug/L			(80-132)	111	33.4	LCS	pane	2,2-Dichloropropane
LCSD28.6951 (< 20) 30 ug/L02/Isopropylbenzene (Cumene)LCS33.4111 $(80-121)$ 30 ug/L02/1,2-DichloropropaneLCS33.0110 $(80-121)$ 30 ug/L02/1,2-DichloropropaneLCS33.0110 $(80-121)$ 30 ug/L02/1,1-DichloropropaneLCS33.0110 $(80-122)$ 30 ug/L02/1,1-DichloropropaneLCS33.0110 $(80-122)$ 30 ug/L02/1,1-DichloropropaneLCS33.0110 $(80-122)$ 30 ug/L02/1,1,2-TrichloroethaneLCS32.1107 $(77-120)$ 30 ug/L02/1,3-DichlorobenzeneLCS31.4105 $(80-120)$ 30 ug/L02/1,2,3-TrichlorobenzeneLCS30.9103 $(77-120)$ 30 ug/L02/1,2,3-TrichlorobenzeneLCS30.9103 $(77-120)$ 30 ug/L02/1,2,3-TrichlorobenzeneLCS30.9103 $(77-120)$ 30 ug/L02/1,2,3-TrichlorobenzeneLCS30.21012 (< 20) 30 ug/L02/	16/2009		30 ug/L	(< 20)	5		106	31.9	LCSD		
Isopropylbenzene (Cumene)LCS 33.4 LCSD 111 32.3 $(80-121)$ 108 3 3 (<20) 30 $102/$ $02/$ 30 $102/$ 1,2-DichloropropaneLCS 33.0 LCSD 110 1.5 $(80-121)$ 5 30 (<20) 30 $102/$ $02/$ 30 $02/$ 1,1-DichloropropaneLCS LCSD 33.0 110 $LCSD110105(80-122)530(<20)30102/1,1-DichloropropaneLCS1.532.1105107105(77-120)1(<20)30102/02/3002/1,1,2-TrichloroethaneLCS1.531.4105107106(77-120)1(<20)300000/L3000/L02/00/L1,3-DichlorobenzeneLCS1.2,3-TrichlorobenzeneLCS30.2103101(77-120)230000/L00/2/30000/L00/2/000/L$	16/2009		-			(77-125)	95	28.4	LCS	diene	Hexachlorobutadiene
LCSD 32.3 108 3 $(<20$) 30 ug/L $02/$ $1,2$ -DichloropropaneLCS 33.0 110 $(80-121)$ 30 ug/L $02/$ $1,1$ -DichloropropaneLCS 33.0 110 $(80-122)$ 30 ug/L $02/$ $1,1$ -DichloropropaneLCS 33.0 110 $(80-122)$ 30 ug/L $02/$ $1,1$ -DichloropropaneLCS 33.0 110 $(80-122)$ 30 ug/L $02/$ $1,1,2$ -TrichloroethaneLCS 32.1 107 $(77-120)$ 30 ug/L $02/$ $1,3$ -DichlorobenzeneLCS 31.4 105 $(80-120)$ 30 ug/L $02/$ $1,2,3$ -TrichlorobenzeneLCS 30.9 103 $(77-120)$ 30 ug/L $02/$ $1,2,3$ -TrichlorobenzeneLCS 30.9 103 $(77-120)$ 2 (<20) 30 ug/L $02/$	16/2009		30 ug/L	(< 20)	1		95	28.6	LCSD		
1,2-DichloropropaneLCS 33.0 LCSD 110 Model $(80-121)$ S $30 ug/L$ $02/$ Model1,1-DichloropropeneLCS 33.0 LCSD 110 Model $(80-122)$ S $5 (<20)$ $30 ug/L$ $02/$ Model1,1-DichloropropeneLCS 33.0 LCSD 110 Model $(80-122)$ S $5 (<20)$ $30 ug/L$ $02/$ Model1,1,2-TrichloroethaneLCS 32.1 LCSD 107 Model $(77-120)$ Model $30 ug/L$ $02/$ Model1,3-DichlorobenzeneLCS 31.4 LCSD 105 Model $(80-120)$ Model $30 ug/L$ $02/$ Model1,2,3-TrichlorobenzeneLCS 30.9 LCSD 103 Model $(77-120)$ Model $30 ug/L$ $02/$ Model1,2,3-TrichlorobenzeneLCS 30.9 Model 103 Model $(77-120)$ Model $30 ug/L$ $02/$ Model	16/2009		30 ug/L			(80-121)	111	33.4	LCS	ne (Cumene)	Isopropylbenzene (Cu
LCSD 31.41055 (<20) 30 ug/L02/1,1-DichloropropeneLCS33.0110 $(80-122)$ 30 ug/L02/1,1,2-TrichloroethaneLCS32.1107 $(77-120)$ 30 ug/L02/1,1,2-TrichloroethaneLCS31.71061 (<20) 30 ug/L02/1,3-DichlorobenzeneLCS31.4105 $(80-120)$ 30 ug/L02/1,2,3-TrichlorobenzeneLCS30.9103 $(77-120)$ 2 (<20) 30 ug/L02/	16/2009		30 ug/L	(< 20)	3		108	32.3	LCSD		
1,1-DichloropropeneLCS 33.0 LCSD 110 S1.5 $(80-122)$ 105 30 (20) 30 $02/$ $02/$ $02/$ 1,1,2-TrichloroethaneLCS 32.1 LCSD 107 1.05 $(77-120)$ $1 (<20)$ 30 $02/$ $02/$ $02/$ 1,3-DichlorobenzeneLCS 31.4 LCSD 105 1.1 $(80-120)$ $1 (<20)$ 30 $02/$ $02/$ $02/$ 1,3-DichlorobenzeneLCS LCSD 31.4 1.04 105 $1 (<20)$ 30 $02/$ $02/$ 30 $02/$ 1,2,3-TrichlorobenzeneLCS 30.2 30.9 103 101 $(77-120)$ 2 30 (<20) 30 $02/$	16/2009		30 ug/L			(80-121)	110	33.0	LCS	pane	1,2-Dichloropropane
LCSD 31.51055 (<20) 30 ug/L02/1,1,2-TrichloroethaneLCS32.1107 $(77-120)$ 30 ug/L02/1,3-DichlorobenzeneLCS31.4105 $(80-120)$ 1 (<20) 30 ug/L02/1,2,3-TrichlorobenzeneLCS30.9103 $(77-120)$ 30 ug/L02/1,2,3-TrichlorobenzeneLCS30.9103 $(77-120)$ 30 ug/L02/1,2,3-TrichlorobenzeneLCS30.21012 (<20) 30 ug/L02/	16/2009		30 ug/L	(< 20)	5		105	31.4	LCSD		
1,1,2-TrichloroethaneLCS 32.1 107 $(77-120)$ 30 ug/L $02/$ 1,3-DichlorobenzeneLCS 31.4 105 $(80-120)$ 30 ug/L $02/$ 1,3-DichlorobenzeneLCS 31.4 105 $(80-120)$ 30 ug/L $02/$ 1,2,3-TrichlorobenzeneLCS 30.9 103 $(77-120)$ 30 ug/L $02/$ 1,2,3-TrichlorobenzeneLCS 30.9 103 $(77-120)$ 30 ug/L $02/$	16/2009		30 ug/L			(80-122)	110	33.0	LCS	pene	1,1-Dichloropropene
LCSD 31.71061 $(< 20$)30 ug/L02/1,3-DichlorobenzeneLCS31.4105 $(80-120)$ 30 ug/L02/LCSD 31.11041 $(< 20$)30 ug/L02/1,2,3-TrichlorobenzeneLCS30.9103 $(77-120)$ 30 ug/L02/LCSD 30.21012 $(< 20$)30 ug/L02/	16/2009		30 ug/L	(<20)	5		105	31.5	LCSD		
1,3-DichlorobenzeneLCS 31.4 105 $(80-120)$ 30 ug/L $02/$ LCSD 31.1 1041 (<20) 30 ug/L $02/$ 1,2,3-TrichlorobenzeneLCS 30.9 103 $(77-120)$ 30 ug/L $02/$ LCSD 30.2 1012 (<20) 30 ug/L $02/$	16/2009		30 ug/L			(77-120)	107	32.1	LCS	thane	1,1,2-Trichloroethane
LCSD 31.11041 $(< 20$)30 ug/L02/1,2,3-TrichlorobenzeneLCS30.9103 $(77-120)$ 30 ug/L02/LCSD 30.21012 $(< 20$)30 ug/L02/	16/2009		30 ug/L	(<20)	1		106	31.7	LCSD		
1,2,3-Trichlorobenzene LCS 30.9 103 (77-120) 30 ug/L 02/ LCSD 30.2 101 2 (<20)	16/2009		30 ug/L			(80-120)	105	31.4	LCS	zene	1,3-Dichlorobenzene
LCSD 30.2 101 2 (<20) 30 ug/L 02/	16/2009		30 ug/L	(<20)	1		104	31.1	LCSD		
	16/2009		30 ug/L			(77-120)	103	30.9	LCS	oenzene	1,2,3-Trichlorobenzer
Surrogates	16/2009		30 ug/L	(< 20)	2		101	30.2	LCSD		
											Surrogates
1,2-Dichloroethane-D4 <surr> LCS 98 (73-120) 02/</surr>	16/2009					(73-120)	98		LCS	ane-D4 <surr></surr>	1,2-Dichloroethane-D
LCSD 95 3 02/	16/2009				3		95		LCSD		
Toluene-d8 <surr> LCS 99 (80-120) 02/</surr>	16/2009					(80-120)	99		LCS	r>	Toluene-d8 <surr></surr>
LCSD 101 1 02/	16/2009				1		101		LCSD		
4-Bromofluorobenzene <surr> LCS 95 (76-120) 02/</surr>	16/2009					(76-120)	95		LCS	enzene <surr></surr>	4-Bromofluorobenzei
LCSD 99 4 02/	16/2009				4		99		LCSD		

SGS Ref.# Client Name Project Name/# Matrix	883392 Lab Contr 883393 Lab Contr The Environmental Co Red Hill BFSF Water (Surface, Eff., 9	ol Sample Dup ompany, Inc. ('			Printec Prep	l Date/Time Batch Method Date	02/19/2009 VXX19212 SW5030B 02/16/2009	10:58
Parameter	Water (Surface, Err.,	QC Results	Pct Recov	LCS/LCSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date

Volatile Gas Chromatography/Mass Spectroscopy

BatchVMS10380MethodSW8260BInstrumentHP 5890 Series II MS1 VJA

SGS Ref.#	1090476002	Billable Matrix Spike	Printed I	Date/Time	02/19/2009 10:58
	1090476003	Billable Matrix Spike Dup.	Prep	Batch	MXX21362
				Method	3010 H20 Digest for Metals ICI
				Date	02/12/2009
Original	1090476001				
Matrix	Water (Surface,	Eff., Ground)			

QC results affect the following production samples:

Parameter (Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spike Amou	
Dissolved Metals b	y ICP/MS								
Lead	BMS	ND	877	88	(80-120)			1000	ug/L 02/17/2009
	BMS	D	922	92		5	(< 15)	1000	ug/L 02/17/2009
Batch MMS5									
Method SW602									
Instrument Perkin	Elmer Sciex I	CP-MS P3							
olatile Fuels Dep	artment								
Gasoline Range Organics	BMS	14.0 J	423	91	(79-108)			450	ug/L 02/10/2009
	BMS	D	411	88		3	(< 20)	450	ug/L 02/10/2009
burrogates									
-Bromofluorobenzene <s< td=""><td>urr> BMS</td><td></td><td>45.2</td><td>90</td><td>(50-150)</td><td></td><td></td><td></td><td>02/10/2009</td></s<>	urr> BMS		45.2	90	(50-150)				02/10/2009
	BMS	D	46.0	92		2			02/10/2009
Batch VFC93	351								
Method SW80									
Instrument HP 589	90 Series II PII	D+HECD V	'BA						
emivolatile Organ	ic Fuels D	epartmen	t						
Diesel Range Organics	BMS	ND	4.9	88	(75-125)			5.56	mg/L 02/11/2009
	BMS	D	5.23	95		6	(< 30)	5.49	mg/L 02/11/2009
urrogates									
a Androstane <surr></surr>	BMS		.0984	89	(50-150)				02/11/2009
	BMS	D	0.0985	90		0			02/11/2009
Batch XFC84	449								
Method SW80									
Instrument HP 689	90 Series II FII	D SV D R							

Volatile Gas Chromatography/Mass Spectroscopy

SGS	

Mark Water (Surface, Eff., Ground Read QC Res MSNNS RP RPD RPD RPD Read RPD Read Read <thr< th=""><th>10</th><th>090476002</th><th></th><th>Matrix Spike Matrix Spike</th><th></th><th>Prin Prep</th><th>ted Date/Time D Batch Method Date</th><th colspan="6">02/19/2009 10:58 VXX19212 Volatiles Extraction AFCEE 3 02/16/2009</th></thr<>	10	090476002		Matrix Spike Matrix Spike		Prin Prep	ted Date/Time D Batch Method Date	02/19/2009 10:58 VXX19212 Volatiles Extraction AFCEE 3 02/16/2009					
Qualifies Original Beam QC Read Ped Recev MSMSD Revo RPD PPD Levels Spiked Analysis Levels Analysis Date Volatile Gas Chromatography/Haas Spectroscopy 5 (<20) 30.0 ugf. 02/16/2009 Benzene BMS ND 31 103 (80-120) 30.0 ugf. 02/16/2009 Toluene BMS ND 31.7 106 (77-120) 30.0 ugf. 02/16/2009 Ediylbenzene BMS ND 31.8 106 6 (<20) 30.0 ugf. 02/16/2009 n-buylbenzene BMS ND 31.8 106 6 (<20) 30.0 ugf. 02/16/2009 n-buylbenzene BMS ND 33.8 106 6 (<20) 30.0 ugf. 02/16/2009 1,4-Dichlorobenzene BMS ND 32.2 107 (80-129) 30.0 ugf. 02/16/2009 1,2-Dichlorobenzene BMS ND 32.7 112 (80-128) 30.0 ugf. 02/16/2009 1,2-Dichlorobenzene BMS ND 32.7 109 <t< th=""><th>8</th><th>)90476001 Jatar (Surface)</th><th>Eff Crown</th><th>4)</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	8)90476001 Jatar (Surface)	Eff Crown	4)									
Parameter Qualifiers parameter Resort Resort Lamete RPD Lamete Parameter Data Voltatile Gas Chromatography/Mass Spectroscopy E 1 103 (80-120) 1 30.0 ug1.02/16/2009 Bonzone BMSD 29.4 98 5 (< 20) 30.0 ug1.02/16/2009 Toluene BMSD 29.6 99 7 (< 20) 30.0 ug1.02/16/2009 BMSD 33.9 113 (80-124) 30.0 ug1.02/16/2009 n-Rutylbenzene BMSD 33.8 106 6 (< 20) 30.0 ug1.02/16/2009 1,4-Dichlorobenzene BMSD 31.8 106 6 (< 20) 30.0 ug1.02/16/2009 1,2-Dichlorocitnane BMSD 30.8 10.3 (< 80-128) - 30.0 ug1.02/16/2009 1,2-Dichlorocitnane BMSD 31.6 105 6 (< 20) 30.0 ug1.02/16/2009 1,2-Dichlorocitnane BMSD 31.7		ater (Surface		,	D /			DBD		1			
Benzene BMS ND 31 103 (80-120) 30.0 ugf. 02/16/2009 Toluene BMS ND 31.7 106 (77-120) 30.0 ugf. 02/16/2009 Ethylbenzene BMS ND 33.9 113 (80-120) 30.0 ugf. 02/16/2009 n-Butylbenzene BMS ND 33.8 106 6 (<20) 30.0 ugf. 02/16/2009 n-Butylbenzene BMS ND 33.8 106 6 (<20) 30.0 ugf. 02/16/2009 n-Butylbenzene BMS ND 33.8 106 6 (<20) 30.0 ugf. 02/16/2009 1,4-Dichlorobenzene BMS ND 30.9 103 (80-129) 30.0 ugf. 02/16/2009 1,2-Dichlorobenzene BMS ND 33.7 112 (80-128) 30.0 ugf. 02/16/2009 1,3-5-Trimethylbenzene BMS ND 33.7 112 (80-128) 30.0 ugf. 02/16/2009 1,2-Dichlorobenzene BMS ND 32.7 109 (80-128) 30.0 ugf. 02/16/2009 <th>Parameter Q</th> <th>ualifiers</th> <th>-</th> <th></th> <th></th> <th></th> <th>RPD</th> <th></th> <th>-</th> <th>2</th>	Parameter Q	ualifiers	-				RPD		-	2			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Volatile Gas Chroma	tography/	Mass Spe	ctroscopy									
	Benzene					(80-120)			30.0				
BMSD 29.6 99 7 (<20) 30.0 ugL 0.2162009 http://benzeneBMSND 33.9 113 $(80-124)$ 30.0 ugL 0.2162009 n-ButylbenzeneBMSD 31.8 106 6 (<20) 30.0 ugL 0.2162009 n-ButylbenzeneBMSND 32.2 107 $(80-124)$ 30.0 ugL 0.2162009 BMSD 32.2 107 $(80-120)$ 30.0 ugL 0.2162009 1,4-DichlorobenzeneBMSND 30.9 103 $(80-129)$ 30.0 ugL 0.2162009 1,2-DichlorochaneBMSD 29.5 98 5 (<20) 30.0 ugL 0.2162009 1,3,5-TrimethylbenzeneBMSD 31.6 105 6 (<20) 30.0 ugL 0.2162009 1,3,5-TrimethylbenzeneBMSD 32.6 109 $(79-128)$ 30.0 ugL 0.2162009 4-ChlorotolueneBMSD 31.6 105 6 (<20) 30.0 ugL 0.2162009 4 -therhyl-2-pentanone (MIBK)BMSD 31.1 104 5 (<20) 30.0 ugL 0.2162009 4 -therhyl-2-pentanone (MIBK)BMSD 32.7 109 $(80-12)$ 30.0 ugL 0.2162009 4 -therhyl-2-pentanone (MIBK)BMSD 33.5 112 $(80-12)$ 30.0 ugL 0.2162009 a -therhylbenzeneBMSD 31.6 105 6 <td></td> <td>BMS</td> <td>D</td> <td>29.4</td> <td>98</td> <td></td> <td>5</td> <td>(< 20)</td> <td>30.0</td> <td></td>		BMS	D	29.4	98		5	(< 20)	30.0				
Ethylbenzene BMS ND 33.9 113 $(80-120)$ 30.0 ug/L $02/L62009$ n.Butylbenzene BMS ND 33.8 113 $(80-124)$ 30.0 ug/L $02/L62009$ n.Butylbenzene BMS ND 32.2 107 $(80-124)$ 30.0 ug/L $02/L62009$ $1,4$ -Dichlorobenzene BMS ND 32.2 107 $(80-129)$ 30.0 ug/L $02/L62009$ $1,2$ -Dichlorobthane BMS ND 30.8 103 $(80-129)$ 30.0 ug/L $02/L62009$ $1,3,5$ -Trimethylhenzene BMS ND 33.7 112 $(80-128)$ 30.0 ug/L $02/L62009$ 4-Chiorotoluene BMS ND 32.6 109 $(79-128)$ 30.0 ug/L $02/L62009$ chiorobenzene BMS ND 32.7 109 $(69-134)$ 90.0 ug/L $02/L62009$ chiorobenzene BMS ND 33.5 112 $(80-125)$ 30.0 ug/L $02/L62$	Toluene					(77-120)			30.0				
BMSD 31.8 106 6 (< 20) 30.0 ug/L 02/16/2009 n-Butylbenzene BMS ND 33.8 113 (80-124) 30.0 ug/L 02/16/2009 1,4-Dichlorobenzene BMSD 30.8 103 6 (< 20)					99		7	(< 20)	30.0	0			
n-Butylbenzene BMS ND 33.8 113 (80-124) 30.0 ug/L 02/L 02/L <th02 l<="" th=""> 02/L 02/L<!--</td--><td>Ethylbenzene</td><td></td><td></td><td></td><td></td><td>(80-120)</td><td></td><td></td><td>30.0</td><td></td></th02>	Ethylbenzene					(80-120)			30.0				
BMSD 31.8 106 6 (< 20) 30.0 ug/t. 02/16/2009 1,4-Dichlorobenzene BMS ND 32.2 107 (80-120) 30.0 ug/t. 02/16/2009 1,2-Dichloroethane BMSD 30.9 103 (80-129) 30.0 ug/t. 02/16/2009 1,3,5-Trimethylbenzene BMS ND 33.7 112 (80-128) 30.0 ug/t. 02/16/2009 4-Chorotoluene BMSD 31.6 105 6 (< 20)							6	(< 20)	30.0	•			
1,4-Dichlorobenzene BMS ND 32.2 107 $(80-120)$ 30.0 ug/L $02/L$	n-Butylbenzene					(80-124)			30.0				
BMSD 30.8 103 5 (< 20) 30.0 $ugrL$ $02/16/2009$ $1,2$ -DichloroethaneBMS ND 30.9 103 $(80-129)$ 30.0 $ugrL$ $02/16/2009$ $1,3,5$ -TrimethylbenzeneBMS ND 33.7 112 $(80-128)$ 30.0 $ugrL$ $02/16/2009$ 4 -ChlorotolueneBMS ND 31.6 105 6 (< 20) 30.0 $ugrL$ $02/16/2009$ 4 -ChlorotolueneBMS ND 32.6 109 $(79\cdot128)$ 30.0 $ugrL$ $02/16/2009$ 4 -ChlorotolueneBMS ND 32.7 109 $(80\cdot120)$ 30.0 $ugrL$ $02/16/2009$ 4 -Methyl-2-pentanoe (MIBK)BMS ND 32.7 109 $(80\cdot120)$ 30.0 $ugrL$ $02/16/2009$ 4 -Methyl-2-pentanoe (MIBK)BMS ND 90.2 100 8 (< 20) 30.0 $ugrL$ $02/16/2009$ 4 -Methyl-2-pentanoe (MIBK)BMS ND 33.5 112 $(80\cdot125)$ 30.0 $ugrL$ $02/16/2009$ 4 -Methyl-2-pentanoe (MIBK)BMS ND 32.3 108 4 (< 20) 30.0 $ugrL$ $02/16/2009$ 4 -IsopropyltolueneBMS ND 32.3 108 4 (< 20) 30.0 $ugrL$ $02/16/2009$ $BMSD$ 31.6 105 5 (< 20) 30.0 $ugrL$ $02/16/2009$ a_1 -1,3-DichloropropeneBMS ND 32.1 107 $(80\cdot129)$ 30.0 $ugrL$ $02/16/2009$ $BMSD$ 31.6		BMS	D		106		6	(< 20)	30.0	•			
1,2-DichloroethaneBMS ND30.9103 $(80-129)$ 30.0 ug/L $02/16/2009$ 1,3,5-TrimethylbenzeneBMS ND33.7112 $(80-128)$ 30.0 ug/L $02/16/2009$ 1,3,5-TrimethylbenzeneBMS ND31.61056 $<$ 2030.0 ug/L $02/16/2009$ 4-ChlorotolueneBMS ND32.6109 $(79-128)$ 30.0 ug/L $02/16/2009$ 4-ChlorotolueneBMS ND32.7109 $(80-120)$ 30.0 ug/L $02/16/2009$ 6-More MarkBMS ND31.11045 $<$ 20 30.0 ug/L $02/16/2009$ 4-Methyl-2-pentanone (MIBK)BMS ND97.8109 $(69-134)$ 90.0 ug/L $02/16/2009$ 6-MS ND33.5112 $(80-125)$ 30.0 ug/L $02/16/2009$ 6-MS ND33.7112 $(80-125)$ 30.0 ug/L $02/16/2009$ 6-MS ND33.7112 $(80-125)$ 30.0 ug/L $02/16/2009$ 6-MS ND32.3108 4 $<$ 20 30.0 ug/L $02/16/2009$ 6-MS ND32.3108 4 $<$ 20 30.0 ug/L $02/16/2009$ 6-MS ND32.3108 6 $<$ 20 30.0 ug/L $02/16/2009$ 6-MS ND32.3108 6 $<$ 20 30.0 ug/L $02/16/2009$ 6-MS ND33.3111 $(80-129)$ 30.0 ug/L $02/16/2009$ 6-MS ND	1,4-Dichlorobenzene					(80-120)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							5	(< 20)	30.0	•			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2-Dichloroethane			30.9		(80-129)			30.0	-			
BMSD 31.6 105 6 (<20) 30.0 ug/L $02/16/2009$ 4-ChlorotolueneBMS ND 32.6 109 $(79\cdot128)$ 30.0 ug/L $02/16/2009$ BMSD 31.0 103 5 (<20) 30.0 ug/L $02/16/2009$ BMSD 31.1 104 5 (<20) 30.0 ug/L $02/16/2009$ 4-Methyl-2-pentanone (MIBK)BMS ND 97.8 109 $(69\cdot134)$ 90.0 ug/L $02/16/2009$ eis-1,2-DichloroetheneBMS ND 33.5 112 $(80\cdot125)$ 30.0 ug/L $02/16/2009$ a BMSD 31.6 105 6 (<20) 30.0 ug/L $02/16/2009$ 4 -lsopropyltolueneBMS ND 33.5 112 $(80\cdot125)$ 30.0 ug/L $02/16/2009$ a BMSD 31.6 105 6 (<20) 30.0 ug/L $02/16/2009$ 4 -lsopropyltolueneBMS ND 32.1 107 $(80\cdot120)$ 30.0 ug/L $02/16/2009$ a BMSD 31.6 105 5 (<20) 30.0 ug/L $02/16/2009$ a BMSD 31.6 105 5 (<20) 30.0 ug/L $02/16/2009$ a BMSD 31.6 105 5 (<20) 30.0 ug/L $02/16/2009$ a BMSD 31.6 105 5 (<20) 30.0 ug/L $02/16/2009$ a BMSD <t< td=""><td></td><td>BMS</td><td>D</td><td></td><td></td><td></td><td>5</td><td>(< 20)</td><td>30.0</td><td>ug/L 02/16/2009</td></t<>		BMS	D				5	(< 20)	30.0	ug/L 02/16/2009			
4-Chlorotoluene BMS ND 32.6 109 $(79-128)$ 30.0 ug/L $02/16/2009$ BMSD 31.0 103 5 (< 20) 30.0 ug/L $02/16/2009$ Chlorobenzene BMS ND 32.7 109 $(80-120)$ 30.0 ug/L $02/16/2009$ 4-Methyl-2-pentanone (MIBK) BMS D 97.8 109 $(69-134)$ 90.0 ug/L $02/16/2009$ cis-1,2-Dichloroethene BMS ND 33.5 112 $(80-125)$ 30.0 ug/L $02/16/2009$ 4-lsopropyltoluene BMS ND 33.7 112 $(80-125)$ 30.0 ug/L $02/16/2009$ 4-lsopropyltoluene BMS ND 32.3 108 4 (< 20) 30.0 ug/L $02/16/2009$ a-frequence BMS ND 32.3 108 4 (< 20) 30.0 ug/L $02/16/2009$ $a-g/L$ $02/16/2009$ 30.4 101 6 (< 20) 30.0 ug/L $02/16/2009$ $a-g/L$ $02/16/2009$	1,3,5-Trimethylbenzene					(80-128)			30.0				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		BMS	D	31.6	105		6	(< 20)	30.0	ug/L 02/16/2009			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4-Chlorotoluene			32.6		(79-128)			30.0				
BMSD 31.1 104 5 (< 20) 30.0 ug/L $02/16/2009$ 4-Methyl-2-pentanone (MIBK)BMS ND 97.8 109 $(69-134)$ 90.0 ug/L $02/16/2009$ BMSD 90.2 100 8 (< 20) 90.0 ug/L $02/16/2009$ cis-1,2-DichloroetheneBMS ND 33.5 112 $(80-125)$ 30.0 ug/L $02/16/2009$ 4 -IsopropyltolueneBMS ND 33.7 112 $(80-125)$ 30.0 ug/L $02/16/2009$ 4 -IsopropyltolueneBMS ND 32.1 107 $(80-120)$ 30.0 ug/L $02/16/2009$ $cis-1,3$ -DichloropropeneBMS ND 32.1 107 $(80-120)$ 30.0 ug/L $02/16/2009$ m -PropylbenzeneBMS ND 33.3 111 $(80-120)$ 30.0 ug/L $02/16/2009$ $bMSD$ 31.6 105 5 (< 20) 30.0 ug/L $02/16/2009$ $bMSD$ 31.6 105 5 (< 20) 30.0 ug/L $02/16/2009$ $bMSD$ 31.6 105 5 (< 20) 30.0 ug/L $02/16/2009$ $bMSD$ 31.6 105 6 (< 20) 30.0 ug/L $02/16/2009$ $bMSD$ 31.6 105 6 (< 20) 30.0 ug/L $02/16/2009$ $bMSD$ 31.6 105 6 (< 20) 30.0 ug/L $02/16/2009$ $bMSD$ 32.1 107 $($		BMS	D	31.0	103		5	(< 20)	30.0	ug/L 02/16/2009			
4-Methyl-2-pentanone (MIBK)BMS ND97.8109(69-134)90.0 ug/L $02/16/2009$ BMSD90.21008(< 20)	Chlorobenzene			32.7	109	(80-120)			30.0				
BMSD 90.2 100 $8 (< 20)$ 90.0 $ug/L 02/16/2009$ cis-1,2-DichloroetheneBMS ND 33.5 $112 (80-125)$ 30.0 $ug/L 02/16/2009$ BMSD 31.6 105 $6 (< 20)$ 30.0 $ug/L 02/16/2009$ 4-IsopropyltolueneBMS ND 33.7 $112 (80-125)$ 30.0 $ug/L 02/16/2009$ BMSD 32.3 108 $4 (< 20)$ 30.0 $ug/L 02/16/2009$ cis-1,3-DichloropropeneBMS ND 32.1 $107 (80-120)$ 30.0 $ug/L 02/16/2009$ n-PropylbenzeneBMS ND 33.3 $111 (80-129)$ 30.0 $ug/L 02/16/2009$ bMSD 31.6 105 $5 (< 20)$ 30.0 $ug/L 02/16/2009$ bMSD 31.6 105 $5 (< 20)$ 30.0 $ug/L 02/16/2009$ bMSD 31.6 105 $5 (< 20)$ 30.0 $ug/L 02/16/2009$ bMSD 31.6 105 $5 (< 20)$ 30.0 $ug/L 02/16/2009$ bMSD 31.6 105 $5 (< 20)$ 30.0 $ug/L 02/16/2009$ bMSD 31.5 105 $6 (< 20)$ 30.0 $ug/L 02/16/2009$ bMSD 31.0 103 $3 (< 20)$ 30.0 $ug/L 02/16/2009$ bMSD 27.6 92 $9 (< 20)$ 30.0 $ug/L 02/16/2009$ bMSD 31.4 105 $3 (< 20)$ 30.0 $ug/L 02/16/2009$ bMSD 31.4 105 $3 (< 20)$ 30.0 $ug/L 02/16/2009$ bMSD 31.4 105 $3 (< 20)$		BMS	D	31.1	104		5	(< 20)	30.0	ug/L 02/16/2009			
cis-1,2-DichloroetheneBMS ND 33.5 112 $(80-125)$ 30.0 ug/L $02/16/2009$ 4 -IsopropyltolueneBMS ND 33.7 112 $(80-125)$ 30.0 ug/L $02/16/2009$ 4 -IsopropyltolueneBMS ND 32.3 108 4 (<20) 30.0 ug/L $02/16/2009$ $BMSD$ 32.3 108 4 (<20) 30.0 ug/L $02/16/2009$ $cis-1,3$ -DichloropropeneBMS ND 32.1 107 $(80-120)$ 30.0 ug/L $02/16/2009$ $n-Propylbenzene$ BMS ND 33.3 111 $(80-129)$ 30.0 ug/L $02/16/2009$ $BMSD$ 31.6 105 5 (<20) 30.0 ug/L $02/16/2009$ $BMSD$ 31.5 105 6 (<20) 30.0 ug/L $02/16/2009$ $BMSD$ 31.0 103 3 (<20) 30.0 ug/L $02/16/2009$ $BMSD$ 31.0 103 3 (<20) 30.0 ug/L $02/16/2009$ $1,2,4$ -TrichlorobenzeneBMS ND 32.2 107 $(80-120)$ 30.0 ug/L $02/16/2009$ $1,2,4$ -TrichlorobenzeneBMS ND	4-Methyl-2-pentanone (MII	<i>,</i>		97.8		(69-134)			90.0	ug/L 02/16/2009			
BMSD 31.6 105 6 (<20) 30.0 ug/L $02/16/2009$ 4 -IsopropyltolueneBMSND 33.7 112 $(80\cdot125)$ 30.0 ug/L $02/16/2009$ $bMSD$ 32.3 108 4 (<20) 30.0 ug/L $02/16/2009$ $cis-1,3$ -DichloropropeneBMSND 32.1 107 $(80\cdot120)$ 30.0 ug/L $02/16/2009$ n -PropylbenzeneBMSND 33.3 111 $(80\cdot129)$ 30.0 ug/L $02/16/2009$ n -PropylbenzeneBMSND 33.3 111 $(80\cdot120)$ 30.0 ug/L $02/16/2009$ $Styrene$ BMSND 33.3 111 $(80\cdot120)$ 30.0 ug/L $02/16/2009$ $Dibromomethane$ BMSND 32.1 107 $(80\cdot120)$ 30.0 ug/L $02/16/2009$ $prophiceBMSND32.1107(80\cdot120)30.0ug/L02/16/2009prophiceBMSND32.1107(80\cdot120)30.0ug/L02/16/2009prophiceBMSND30.3101(80\cdot124)30.0ug/L02/16/2009prophiceBMSND32.2107(80\cdot120)30.0ug/L02/16/2009prophiceBMSND32.2107(80\cdot120)30.0ug/L02/16/2009prophiceBMSND32.2107(80\cdot120$		BMS	D	90.2			8	(< 20)	90.0				
4-IsopropyltolueneBMS <nd< th="">$33.7$$112$$(80-125)$$30.0$$ug/L$$02/16/2009$BMSD$32.3$$108$$4$$(<20)$$30.0$$ug/L$$02/16/2009$cis-1,3-DichloropropeneBMS<nd< td="">$32.1$$107$$(80-120)$$30.0$$ug/L$$02/16/2009$n-PropylbenzeneBMS<nd< td="">$33.3$$111$$(80-129)$$30.0$$ug/L$$02/16/2009$n-PropylbenzeneBMS<nd< td="">$33.3$$111$$(80-129)$$30.0$$ug/L$$02/16/2009$StyreneBMS<nd< td="">$33.3$$111$$(80-120)$$30.0$$ug/L$$02/16/2009$BMSD$31.6$$105$$5$$(<20)$$30.0$$ug/L$$02/16/2009$DibromomethaneBMS<nd< td="">$32.1$$107$$(80-120)$$30.0$$ug/L$$02/16/2009$DibromomethaneBMS<nd< td="">$32.1$$107$$(80-120)$$30.0$$ug/L$$02/16/2009$trans-1,3-DichloropropeneBMS<nd< td="">$30.3$$101$$(80-124)$$30.0$$ug/L$$02/16/2009$$1,2,4$-TrichlorobenzeneBMS<nd< td="">$32.2$$107$$(80-120)$$30.0$$ug/L$$02/16/2009$AcetoneBMS<nd< td="">$95.7$$106$$(50-135)$$90.0$$ug/L$$02/16/2009$$1,1,2,2$-TetrachloroethaneBMS<nd< td="">$32.3$$108$$(76-123)$$30.0$$ug/L$$02/16/2009$</nd<></nd<></nd<></nd<></nd<></nd<></nd<></nd<></nd<></nd<></nd<>	cis-1,2-Dichloroethene	BMS	ND	33.5	112	(80-125)			30.0	ug/L 02/16/2009			
BMSD 32.3 108 $4 \ (< 20)$ $30.0 \ ug/L \ 02/16/2009$ cis-1,3-DichloropropeneBMS ND $32.1 \ 107 \ (80-120)$ $30.0 \ ug/L \ 02/16/2009$ BMSD $30.4 \ 101$ $6 \ (< 20)$ $30.0 \ ug/L \ 02/16/2009$ n-PropylbenzeneBMS ND $33.3 \ 111 \ (80-129)$ $30.0 \ ug/L \ 02/16/2009$ BMSD $31.6 \ 105$ $5 \ (< 20)$ $30.0 \ ug/L \ 02/16/2009$ StyreneBMS ND $33.3 \ 111 \ (80-120)$ $30.0 \ ug/L \ 02/16/2009$ BMSD $31.5 \ 105$ $6 \ (< 20)$ $30.0 \ ug/L \ 02/16/2009$ DibromomethaneBMS ND $32.1 \ 107 \ (80-120)$ $30.0 \ ug/L \ 02/16/2009$ BMSD $31.6 \ 103$ $3 \ (< 20)$ $30.0 \ ug/L \ 02/16/2009$ BMSD $31.6 \ 103$ $3 \ (< 20)$ $30.0 \ ug/L \ 02/16/2009$ BMSD $31.4 \ 103$ $3 \ (< 20)$ $30.0 \ ug/L \ 02/16/2009$ BMSD $31.4 \ 105$ $3 \ (< 20)$ $30.0 \ ug/L \ 02/16/2009$ BMSD $31.4 \ 105$ $3 \ (< 20)$ $30.0 \ ug/L \ 02/16/2009$ BMSD $31.4 \ 105 \ 3 \ (< 20)$ $30.0 \ ug/L \ 02/16/2009$ AcetoneBMS ND $92.0 \ 102 \ 4 \ (< 20)$ $90.0 \ ug/L \ 02/16/2009$ BMSD $92.0 \ 102 \ 4 \ (< 20)$ $90.0 \ ug/L \ 02/16/2009$ $1,1,2,2$ -TetrachloroethaneBMS ND $32.3 \ 108 \ (76-123)$ $30.0 \ ug/L \ 02/16/2009$		BMS	D	31.6	105		6	(< 20)	30.0	•			
cis-1,3-DichloropropeneBMS ND 32.1 107 ($\$0-120$) 30.0 ug/L 02/16/2009BMSD 30.4 101 6 (<20) 30.0 ug/L 02/16/2009n-PropylbenzeneBMS ND 33.3 111 ($\$0-129$) 30.0 ug/L 02/16/2009BMSD 31.6 105 5 (<20) 30.0 ug/L 02/16/2009StyreneBMS ND 33.3 111 ($\$0-120$) 30.0 ug/L 02/16/2009BMSD 31.5 105 6 (<20) 30.0 ug/L 02/16/2009DibromomethaneBMS ND 32.1 107 ($\$0-120$) 30.0 ug/L 02/16/2009BMSD 31.0 103 3 (<20) 30.0 ug/L 02/16/2009BMSD 31.0 103 3 (<20) 30.0 ug/L 02/16/2009 $trans-1,3$ -DichloropropeneBMS ND 30.3 101 ($\$0-124$) 30.0 ug/L 02/16/2009 $1,2,4$ -TrichlorobenzeneBMS ND 32.2 107 ($\$0-120$) 30.0 ug/L 02/16/2009 $hXSD$ 31.4 105 3 (<20) 30.0 ug/L 02/16/2009 $hXSD$ 31.4 105 3 (<20) 30.0 ug/L 02/16/2009 $hXSD$ 31.4 105 3 (<20) 30.0 ug/L 02/16/2009 $hXSD$ 92.0 102 4 (<20) 90.0 ug/L 02/16/2009 $hXSD$ 32.3 108 ($76-123$) 30.0 ug/L 02/16/2009 $hXSD$ 32.3 108 ($76-123$) 30.0 ug/L 02/16/2009	4-Isopropyltoluene	BMS	ND	33.7	112	(80-125)			30.0	ug/L 02/16/2009			
BMSD 30.4 101 6 $(<20$) 30.0 ug/L $02/16/2009$ n -PropylbenzeneBMS ND 33.3 111 $(80-129)$ 30.0 ug/L $02/16/2009$ $BMSD$ 31.6 105 5 (<20) 30.0 ug/L $02/16/2009$ StyreneBMS ND 33.3 111 $(80-120)$ 30.0 ug/L $02/16/2009$ $BMSD$ 31.5 105 6 (<20) 30.0 ug/L $02/16/2009$ $Dibromomethane$ BMS ND 32.1 107 $(80-120)$ 30.0 ug/L $02/16/2009$ $mas-1,3$ -DichloropropeneBMS ND 30.3 101 $(80-124)$ 30.0 ug/L $02/16/2009$ $1,2,4$ -TrichlorobenzeneBMS ND 32.2 107 $(80-120)$ 30.0 ug/L $02/16/2009$ $Acetone$ BMS ND 95.7 106 $(50-135)$ 90.0 ug/L $02/16/2009$ $1,1,2,2$ -TetrachloroethaneBMS ND 32.3 108 $(76-123)$ 30.0 ug/L $02/16/2009$		BMS	D	32.3	108		4	(< 20)	30.0	ug/L 02/16/2009			
n-PropylbenzeneBMS ND 33.3 111 (80-129) 30.0 ug/L 02/16/2009BMSD 31.6 105 5 (< 20)	cis-1,3-Dichloropropene			32.1	107	(80-120)			30.0	ug/L 02/16/2009			
BMSD 31.6 105 $5 (< 20$) 30.0 $ug/L 02/16/2009$ StyreneBMS ND 33.3 $111 (80-120)$ 30.0 $ug/L 02/16/2009$ BMSD 31.5 105 $6 (< 20$) 30.0 $ug/L 02/16/2009$ DibromomethaneBMS ND 32.1 $107 (80-120)$ 30.0 $ug/L 02/16/2009$ DibromomethaneBMSD 31.0 103 $3 (< 20$) 30.0 $ug/L 02/16/2009$ trans-1,3-DichloropropeneBMS ND 30.3 $101 (80-124)$ 30.0 $ug/L 02/16/2009$ $1,2,4$ -TrichlorobenzeneBMS ND 32.2 $107 (80-120)$ 30.0 $ug/L 02/16/2009$ AcetoneBMS ND 32.2 $107 (80-120)$ 30.0 $ug/L 02/16/2009$ $Acetone$ BMS ND 95.7 $106 (50-135)$ 90.0 $ug/L 02/16/2009$ $1,1,2,2$ -TetrachloroethaneBMS ND 32.3 $108 (76-123)$ 30.0 $ug/L 02/16/2009$		BMS	D	30.4	101		6	(< 20)	30.0	ug/L 02/16/2009			
StyreneBMS ND 33.3 111 (80-120) 30.0 ug/L 02/16/2009BMSD 31.5 105 6 (< 20)	n-Propylbenzene			33.3		(80-129)			30.0	ug/L 02/16/2009			
BMSD 31.5 105 6 $(< 20$) 30.0 ug/L $02/16/2009$ DibromomethaneBMSND 32.1 107 $(80-120)$ 30.0 ug/L $02/16/2009$ BMSD 31.0 103 3 $(< 20$) 30.0 ug/L $02/16/2009$ trans-1,3-DichloropropeneBMSND 30.3 101 $(80-124)$ 30.0 ug/L $02/16/2009$ trans-1,3-DichloropropeneBMSND 32.2 107 $(80-124)$ 30.0 ug/L $02/16/2009$ 1,2,4-TrichlorobenzeneBMSND 32.2 107 $(80-120)$ 30.0 ug/L $02/16/2009$ AcetoneBMSND 95.7 106 $(50-135)$ 90.0 ug/L $02/16/2009$ AcetoneBMSND 92.0 102 4 $(< 20$) 90.0 ug/L $02/16/2009$ $1,1,2,2$ -TetrachloroethaneBMSND 32.3 108 $(76-123)$ 30.0 ug/L $02/16/2009$		BMS	D	31.6	105		5	(< 20)	30.0	ug/L 02/16/2009			
DibromomethaneBMSND 32.1 107 $(80-120)$ 30.0 ug/L $02/16/2009$ BMSD 31.0 103 3 (<20) 30.0 ug/L $02/16/2009$ trans-1,3-DichloropropeneBMSND 30.3 101 $(80-124)$ 30.0 ug/L $02/16/2009$ BMSD 27.6 92 9 (<20) 30.0 ug/L $02/16/2009$ $1,2,4$ -TrichlorobenzeneBMSND 32.2 107 $(80-120)$ 30.0 ug/L $02/16/2009$ AcetoneBMSND 95.7 106 $(50-135)$ 90.0 ug/L $02/16/2009$ AcetoneBMS 92.0 102 4 (<20) 90.0 ug/L $02/16/2009$ $1,1,2,2$ -TetrachloroethaneBMSND 32.3 108 $(76-123)$ 30.0 ug/L $02/16/2009$	Styrene	BMS	ND	33.3		(80-120)			30.0	ug/L 02/16/2009			
BMSD 31.0 103 3 (< 20) 30.0 ug/L $02/16/2009$ trans-1,3-DichloropropeneBMSND 30.3 101 $(80-124)$ 30.0 ug/L $02/16/2009$ BMSD 27.6 92 9 (< 20) 30.0 ug/L $02/16/2009$ $1,2,4$ -TrichlorobenzeneBMSND 32.2 107 $(80-120)$ 30.0 ug/L $02/16/2009$ $BMSD$ 31.4 105 3 (< 20) 30.0 ug/L $02/16/2009$ AcetoneBMSND 95.7 106 $(50-135)$ 90.0 ug/L $02/16/2009$ $BMSD$ 92.0 102 4 (< 20) 90.0 ug/L $02/16/2009$ $1,1,2,2$ -TetrachloroethaneBMSND 32.3 108 $(76-123)$ 30.0 ug/L $02/16/2009$		BMS	D	31.5	105		6	(< 20)	30.0	ug/L 02/16/2009			
trans-1,3-DichloropropeneBMSND 30.3 101 $(80-124)$ 30.0 ug/L $02/16/2009$ BMSD27.6929 (<20) 30.0 ug/L $02/16/2009$ 1,2,4-TrichlorobenzeneBMSND 32.2 107 $(80-120)$ 30.0 ug/L $02/16/2009$ BMSD 31.4 105 3 (<20) 30.0 ug/L $02/16/2009$ AcetoneBMSND 95.7 106 $(50-135)$ 90.0 ug/L $02/16/2009$ $1,1,2,2$ -TetrachloroethaneBMSND 32.3 108 $(76-123)$ 30.0 ug/L $02/16/2009$	Dibromomethane	BMS	ND	32.1	107	(80-120)			30.0	ug/L 02/16/2009			
BMSD 27.6 92 9 (< 20) 30.0 ug/L 02/16/2009 1,2,4-Trichlorobenzene BMS ND 32.2 107 (80-120) 30.0 ug/L 02/16/2009 BMSD 31.4 105 3 (< 20)		BMS	D	31.0	103		3	(< 20)	30.0	ug/L 02/16/2009			
1,2,4-TrichlorobenzeneBMSND 32.2 107 $(80-120)$ 30.0 ug/L $02/16/2009$ BMSD 31.4 105 3 (<20) 30.0 ug/L $02/16/2009$ AcetoneBMSND 95.7 106 $(50-135)$ 90.0 ug/L $02/16/2009$ BMSD 92.0 102 4 (<20) 90.0 ug/L $02/16/2009$ $1,1,2,2$ -TetrachloroethaneBMSND 32.3 108 $(76-123)$ 30.0 ug/L $02/16/2009$	trans-1,3-Dichloropropene	BMS	ND	30.3	101	(80-124)			30.0	ug/L 02/16/2009			
BMSD 31.4 105 3 (< 20) 30.0 ug/L 02/16/2009 Acetone BMS ND 95.7 106 (50-135) 90.0 ug/L 02/16/2009 BMSD 92.0 102 4 (< 20) 90.0 ug/L 02/16/2009 1,1,2,2-Tetrachloroethane BMS ND 32.3 108 (76-123) 30.0 ug/L 02/16/2009		BMS	D				9	(< 20)	30.0	ug/L 02/16/2009			
Acetone BMS ND 95.7 106 (50-135) 90.0 ug/L 02/16/2009 BMSD 92.0 102 4 (< 20)	1,2,4-Trichlorobenzene			32.2	107	(80-120)			30.0				
BMSD 92.0 102 4 (< 20) 90.0 ug/L 02/16/2009 1,1,2,2-Tetrachloroethane BMS ND 32.3 108 (76-123) 30.0 ug/L 02/16/2009		BMS	D	31.4	105		3	(< 20)	30.0	ug/L 02/16/2009			
1,1,2,2-Tetrachloroethane BMS ND 32.3 108 (76-123) 30.0 ug/L 02/16/2009	Acetone	BMS	ND	95.7	106	(50-135)			90.0	ug/L 02/16/2009			
		BMS	D	92.0	102		4	(< 20)	90.0	ug/L 02/16/2009			
BMSD 31.4 105 3 (< 20) 30.0 μ_0/t 02/16/2009	1,1,2,2-Tetrachloroethane	BMS	ND	32.3	108	(76-123)			30.0	ug/L 02/16/2009			
51.52 51.7 100 51.7 51.0 1002007		BMS	D	31.4	105		3	(< 20)	30.0	ug/L 02/16/2009			

SGS	

SGS Ref.# Original	1090476002Billable Matrix Spike1090476003Billable Matrix Spike Dup.1090476001						ted Date/Time D Batch Method Date	02/19/2009 10:58 VXX19212 Volatiles Extraction AFCEE 3 02/16/2009					
Matrix		i `ace, Eff., Groun	d)										
Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spike Amou	2				
Volatile Gas Chr	omatograp	hy/Mass Spe	ctroscopy										
1,2-Dibromo-3-chlorop		MS ND	31.4	105	(73-130)			30.0	ug/L 02/16/2009				
	В	MSD	30.5	102		3	(< 20)	30.0	ug/L 02/16/2009				
Methyl-t-butyl ether		MS ND	50	111	(80-120)			45.0	ug/L 02/16/2009				
	В	SMSD	43.6	97		14	(< 20)	45.0	ug/L 02/16/2009				
Tetrachloroethene		MS ND	34.3	114	(79-122)			30.0	ug/L 02/16/2009				
		SMSD	31.6	105		8	(< 20)	30.0	ug/L 02/16/2009				
Dibromochloromethane	e B	MS ND	29.5	98	(80-120)			30.0	ug/L 02/16/2009				
	В	SMSD	27.1	90		8	(< 20)	30.0	ug/L 02/16/2009				
1,3-Dichloropropane	В	MS ND	32.8	109	(80-121)			30.0	ug/L 02/16/2009				
	В	MSD	30.9	103		6	(< 20)	30.0	ug/L 02/16/2009				
1,2-Dibromoethane	В	MS ND	32.5	108	(80-120)			30.0	ug/L 02/16/2009				
	В	MSD	30.5	102		6	(< 20)	30.0	ug/L 02/16/2009				
Carbon tetrachloride		MS ND	35.2	117	(80-126)			30.0	ug/L 02/16/2009				
	В	MSD	32.7	109		7	(< 20)	30.0	ug/L 02/16/2009				
1,1,1,2-Tetrachloroetha	ine B	MS ND	30.6	102	(80-120)			30.0	ug/L 02/16/2009				
	В	MSD	28.7	96		6	(< 20)	30.0	ug/L 02/16/2009				
Chloroform	В	MS ND	31.1	104	(80-124)			30.0	ug/L 02/16/2009				
	В	MSD	29.4	98		6	(< 20)	30.0	ug/L 02/16/2009				
Bromobenzene	В	MS ND	31.7	106	(80-120)			30.0	ug/L 02/16/2009				
	В	MSD	30.0	100		5	(< 20)	30.0	ug/L 02/16/2009				
Chloromethane	В	MS ND	54.3	181*	(67-125)			30.0	ug/L 02/16/2009				
	В	MSD	50.5	168*		7	(< 20)	30.0	ug/L 02/16/2009				
1,2,3-Trichloropropane	В	MS ND	33.1	110	(80-120)			30.0	ug/L 02/16/2009				
	В	MSD	31.1	104		6	(< 20)	30.0	ug/L 02/16/2009				
Bromomethane	В	MS ND	37.6	125	(30-140)			30.0	ug/L 02/16/2009				
	В	MSD	39.7	132		5	(< 20)	30.0	ug/L 02/16/2009				
Bromochloromethane	В	MS ND	34.1	114	(77-129)			30.0	ug/L 02/16/2009				
	В	MSD	32.1	107		6	(< 20)	30.0	ug/L 02/16/2009				
Vinyl chloride	В	MS ND	47.5	158*	(72-145)			30.0	ug/L 02/16/2009				
	В	MSD	45.0	150*		5	(< 20)	30.0	ug/L 02/16/2009				
Dichlorodifluorometha	ne B	MS ND	56.3	188*	(62-153)			30.0	ug/L 02/16/2009				
	В	MSD	52.8	176*		7	(< 20)	30.0	ug/L 02/16/2009				
Chloroethane	В	MS ND	30.1	100	(67-133)			30.0	ug/L 02/16/2009				
	В	MSD	27.4	91		9	(< 20)	30.0	ug/L 02/16/2009				
sec-Butylbenzene	В	MS ND	32.6	109	(80-120)			30.0	ug/L 02/16/2009				
	В	MSD	31.1	104		5	(< 20)	30.0	ug/L 02/16/2009				
Bromodichloromethane	e B	MS ND	33.8	113	(80-120)			30.0	ug/L 02/16/2009				
	В	MSD	32.0	107		6	(< 20)	30.0	ug/L 02/16/2009				
1,1-Dichloroethene	В	MS ND	33.1	110	(76-130)			30.0	ug/L 02/16/2009				
		MSD	31.7	106		4	(< 20)	30.0	ug/L 02/16/2009				

SGS	

SGS Ref.#	1090476002 1090476003		Matrix Spik Matrix Spik		Print Prep	ed Date/Time Batch Method Date	02/19/2009 10:58 VXX19212 Volatiles Extraction AFCEE 3 02/16/2009					
Original Matrix	1090476001 Water (Surface	Eff Group	d)									
Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spike Amou		Analysis Date		
		(h										
Volatile Gas Chro					(((12()				17			
2-Butanone (MEK)		S ND	104	115	(66-136)	((< 20)	90.0	•	02/16/2009		
NG (1 1 11 11	BMS		97.8	109	((2, 121))	6	(< 20)	90.0	•	02/16/2009		
Methylene chloride		S ND	32.7	109	(63-131)	5	(< 20)	30.0	-	02/16/2009		
T :11 (1)	BMS		31.2	104	((0, 145))	5	(< 20)	30.0	•	02/16/2009		
Trichlorofluoromethane		S ND	35.6	119	(68-145)	0	(. 20)	30.0	-	02/16/2009		
	BMS		32.4	108	(00.100)	9	(< 20)	30.0	•	02/16/2009		
P & M -Xylene		S ND	68.3	114	(80-120)		(- -)	60.0	-	02/16/2009		
	BMS		64.6	108	(75.100)	6	(< 20)	60.0	•	02/16/2009		
Naphthalene		S ND	33.1	110	(75-120)		(- -)	30.0	-	02/16/2009		
	BMS		31.1	104	(00.100)	6	(< 20)	30.0	•	02/16/2009		
o-Xylene		S ND	33.8	113	(80-120)			30.0	-	02/16/2009		
_	BMS		31.1	104	(00.100)	8	(< 20)	30.0	•	02/16/2009		
Bromoform		S ND	30.2	101	(80-120)			30.0	-	02/16/2009		
	BMS		28.6	95		6	(< 20)	30.0	•	02/16/2009		
1-Chlorohexane		S ND	50.7	113	(70-125)			45.0	-	02/16/2009		
	BMS		48.2	107		5	(< 20)	45.0	•	02/16/2009		
1,2,4-Trimethylbenzene		S ND	33.1	110	(80-125)			30.0	-	02/16/2009		
	BMS	SD	31.1	104		6	(< 20)	30.0	•	02/16/2009		
tert-Butylbenzene		S ND	33	110	(80-122)			30.0	-	02/16/2009		
	BMS	SD	31.2	104		5	(< 20)	30.0	•	02/16/2009		
1,1,1-Trichloroethane	BMS	S ND	33	110	(80-122)			30.0	-	02/16/2009		
	BMS		31.5	105		5	(< 20)	30.0	•	02/16/2009		
1,1-Dichloroethane		S ND	33.3	111	(80-120)			30.0	ug/L	02/16/2009		
	BMS	SD	30.5	102		9	(< 20)	30.0	ug/L	02/16/2009		
2-Chlorotoluene		S ND	32.5	108	(80-125)			30.0	ug/L	02/16/2009		
	BMS	SD	30.6	102		6	(< 20)	30.0	ug/L	02/16/2009		
Trichloroethene		S ND	31.1	104	(80-125)			30.0	ug/L	02/16/2009		
	BMS	SD	29.5	98		5	(< 20)	30.0	ug/L	02/16/2009		
trans-1,2-Dichloroethen	e BMS	S ND	48.4	161*	(79-132)			30.0	ug/L	02/16/2009		
	BMS	SD	32.2	107		40 *	(< 20)	30.0	ug/L	02/16/2009		
1,2-Dichlorobenzene	BMS	S ND	31.2	104	(80-120)			30.0	ug/L	02/16/2009		
	BMS	SD	30.4	101		2	(< 20)	30.0	ug/L	02/16/2009		
2,2-Dichloropropane	BMS	S ND	35.3	118	(80-132)			30.0	ug/L	02/16/2009		
	BMS	SD	33.0	110		7	(< 20)	30.0	ug/L	02/16/2009		
Hexachlorobutadiene	BMS	S ND	29.4	98	(77-125)			30.0	ug/L	02/16/2009		
	BMS	SD	29.0	97		1	(< 20)	30.0	ug/L	02/16/2009		
Isopropylbenzene (Cum	ene) BMS	S ND	33.3	111	(80-121)			30.0	ug/L	02/16/2009		
	BMS	SD	31.5	105		6	(< 20)	30.0	ug/L	02/16/2009		
1,2-Dichloropropane	BMS	S ND	33.4	111	(80-121)			30.0	ug/L	02/16/2009		
	BMS	SD	31.8	106		5	(< 20)	30.0	119/L	02/16/2009		

SGS	

SGS Ref.# Original Matrix	1090476 1090476 1090476 Water (S	5003 Bi	llable Matrix Spil llable Matrix Spil Ground)			Prin Preț	ted Date/Time D Batch Method Date	VXX	iles Extraction AFCEE 3.1
Parameter	Original QC Pct MS/MSD RPD Qualifiers Result Recov Limits RPD Limits			Spiked Amour	5				
Volatile Gas	s Chromatogr	aphy/Mass	Spectroscop	Y					
1,1-Dichloroprop	pene	BMS ND BMSD	34.1 31.6		(80-122)	8	(< 20)	30.0 30.0	ug/L 02/16/2009 ug/L 02/16/2009
1,1,2-Trichloroet	thane	BMS ND	33.3	111	(77-120)			30.0	ug/L 02/16/2009
1,3-Dichlorobenz	zene	BMSD BMS ND	31.3 32.6	104 109	(80-120)	6	(< 20)	30.0 30.0	ug/L 02/16/2009 ug/L 02/16/2009
1,2,3-Trichlorob	enzene	BMSD BMS ND	30.7 31.8	102 106	(77-120)	6	(< 20)	30.0 30.0	ug/L 02/16/2009 ug/L 02/16/2009
		BMSD	30.5	102	. ,	4	(< 20)	30.0	ug/L 02/16/2009
Surrogates									
1,2-Dichloroetha	nne-D4 <surr></surr>	BMS	28.9	96	(73-120)				02/16/2009
		BMSD	29.1	97		1			02/16/2009
Toluene-d8 < sur	r>	BMS	29.9	100	(80-120)				02/16/2009
		BMSD	29.4	98		2			02/16/2009
4-Bromofluorobe	enzene <surr></surr>	BMS	29.9	100	(76-120)				02/16/2009
		BMSD	29.9	100		0			02/16/2009
Batch Method	VMS10380 SW8260B								

Instrument HP 5890 Series II MS1 VJA

Polynuclear Aromatics GC/MS

SGS	

SGS Ref.#	1090476002Billable Matrix Spike1090476003Billable Matrix Spike Dup.						ted Date/Time Batch Method Date	02/19/2009 10:58 XXX20586 3520 Liquid/Liquid Ext for 827 02/10/2009					
Original	1090476001												
Matrix	Water (Surface, E	Eff., Groun											
Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amoun	2				
Polynuclear Aroma	tics GC/MS												
Acenaphthylene	BMS	ND	.345	60	(50-105)			0.575	ug/L 02/10/2009				
	BMSD		0.313	58		10	(< 30)	0.538	ug/L 02/10/2009				
Acenaphthene	BMS	ND	.332	58	(45-110)			0.575	ug/L 02/10/2009				
	BMSD		0.311	58		7	(< 30)	0.538	ug/L 02/10/2009				
Fluorene	BMS	ND	.351	61	(50-110)			0.575	ug/L 02/10/2009				
	BMSD		0.326	61		7	(< 30)	0.538	ug/L 02/10/2009				
Phenanthrene	BMS	ND	.348	61	(50-115)			0.575	ug/L 02/10/2009				
	BMSD		0.332	62		5	(< 30)	0.538	ug/L 02/10/2009				
Anthracene	BMS	ND	.352	61	(55-110)			0.575	ug/L 02/10/2009				
	BMSD		0.329	61		7	(< 30)	0.538	ug/L 02/10/2009				
Fluoranthene	BMS	ND	.42	73	(55-125)			0.575	ug/L 02/10/2009				
	BMSD		0.395	73		6	(< 30)	0.538	ug/L 02/10/2009				
Pyrene	BMS	ND	.41	71	(50-130)			0.575	ug/L 02/10/2009				
-	BMSD		0.380	71		8	(< 30)	0.538	ug/L 02/10/2009				
Benzo(a)Anthracene	BMS	ND	.413	72	(55-120)			0.575	ug/L 02/10/2009				
	BMSD		0.383	71		8	(< 30)	0.538	ug/L 02/10/2009				
Chrysene	BMS	ND	.409	71	(55-120)			0.575	ug/L 02/10/2009				
5	BMSD		0.375	70		9	(< 30)	0.538	ug/L 02/10/2009				
Benzo[b]Fluoranthene	BMS	ND	.411	72	(46-130)		. ,	0.575	ug/L 02/10/2009				
[.]	BMSD		0.389	72		6	(< 30)	0.538	ug/L 02/10/2009				
Benzo[k]fluoranthene	BMS		.426	74	(60-125)		()	0.575	ug/L 02/10/2009				
	BMSD		0.386	72		10	(< 30)	0.538	ug/L 02/10/2009				
Benzo[a]pyrene	BMS		.432	75	(55-120)		()	0.575	ug/L 02/10/2009				
	BMSD		0.391	73	· /	10	(< 30)	0.538	ug/L 02/10/2009				
Indeno[1,2,3-c,d] pyrene			.435	76	(45-125)		()	0.575	ug/L 02/10/2009				
	BMSD		0.387	70	(12	(< 30)	0.538	ug/L 02/10/2009				
Dibenzo[a,h]anthracene	BMS		.445	77	(41-140)		()	0.575	ug/L 02/10/2009				
Dioenzola,njananacene	BMSD		0.395	73	()	12	(< 30)	0.538	ug/L 02/10/2009				
Benzo[g,h,i]perylene	BMS		.422	73	(46-125)		(30)	0.575	ug/L 02/10/2009				
Denzo[g,n,1]peryrene	BMSD		0.390	73	(10120)	8	(< 30)	0.538	ug/L 02/10/2009				
Naphthalene	BMS		.334	58	(42-100)	0	(30)	0.575	ug/L 02/10/2009				
aphillalene	BMSD		0.307	57	(.= 100)	9	(< 30)	0.538	ug/L 02/10/2009				
1-Methylnaphthalene	BMS		.332	58	(46-115)	1	(150)	0.575	ug/L 02/10/2009				
	BMSD		0.301	56	()	10	(< 30)	0.575	ug/L 02/10/2009				
2-Methylnaphthalene	BMSD		.32	56	(45-105)	10	(20)	0.575	ug/L 02/10/2009				
- meany maphanatone	BMSD		0.289	54	(10	(< 30)	0.575	ug/L 02/10/2009 ug/L 02/10/2009				
Sumogator	DirioD		0.207	51		10	(20)	0.550	46/1 01/10/2009				
Surrogates			1.7.2		(50.125)				00/10/2000				
Terphenyl-d14 <surr></surr>	BMS		.456	79 70	(50-135)	-			02/10/2009				
	BMSD		0.425	79		7			02/10/2009				

SGS Ref.#	1090476002	Billable	Matrix Spike	e		Printee	d Date/Time	02/19/2009	10:58
	1090476003	Billable	Matrix Spike	e Dup.		Prep	Batch	XXX20586	5
							Method	3520 Liqui	d/Liquid Ext for 827
							Date	02/10/2009)
Original	1090476001								
Matrix	Water (Surface,	Eff., Groun	d)						
Parameter	Qualifiers	Original Result	QC Result	Pct Recov	MS/MSD Limits	RPD	RPD Limits	Spiked Amount	Analysis Date

Polynuclear Aromatics GC/MS

BatchXMS4825Method8270D SIMSInstrumentHP 6890/5973 MS SVOA

																	<u>vv</u>	ww.t	<u>is.sgs.com</u>
CLIENT:	TEC INC.			-	SGS Ref	erence #:			et al construction de la construcción de la									_	of
CONTACT:	Rick Adkisson	PHONE NO:	808.528.1445			· · ·							·			page of			
	•	SITE/PWSID#:	Red Hill BFSF			Preserv.		2/¥	5 } \$	5/		103	/		/	/	/	/	
PROJECT:		511E/PW5ID#:	Reu nill BrSr		#	Used SAMPLE	-	<u>/~</u>	\sim	<u> </u>	╱ݞ	Ύ			<u> </u>	<u> </u>	\leftarrow	\leftarrow	
REPORTS TO:	Rick Adkisson	email <u>rkadkisso</u> i	n@tecinc.com	l	с	TYPE													
		cc <u>wmcwhitm</u>	nan@tecinc.co	<u>om</u>	Ö N	C =	m (e la construction de la construc		SIMS)									
INVOICE TO:	TEC INC	QUOTE #: P.O. NUMBER:			T A I N	СОМР	O (8015B)	tO (8015B)	(8260B)	(8270C-SIA	(6020)	-	-						
LAB NO		DATE	TIME	MATRIX	E R S	G = GRAB	TPH-GRO	TPH-DRO	voc's (PAH's (Diss Pb								REMARKS
04-164-5C	RHMW2254-WG14	2/4/2009	0920	Water	23		X	X	X	X	X	Ø	4-K						3x Volume sent in 2 coolers
4) A-H	RHMW03-WG14	2/4/2009	1110	Water	6		X		X										
ØA-F	RHMW02-WG14	2/4/2009	1240	Water	6		X		X										
6) A-F	RHMWA01-WG14	2/4/2009	1205	Water	6		X		X										
ØAF	RHMW01-WG14	2/4/2009	1455	Water	6		X		X										
0A-F 0A-F 0A-F 0A-F 0A-C	TB01-WG14	2/4/2009	0805	Water	3				X							·			
4 1 (2)																			
Collected/Relinquis	sheet Br. (Date	Time	Received By:	\mathcal{O}				Shippi	ng Cari	rier:						Sampl	es-Rec	eived Cold? YES NO
α	Mula	24/09	1530 <	P4F	pre	7			Shippi	ng Tick	et No:						Tempe	erature	·c: TB=1.7. C=2.3
Relinquished By:	-1-	Date	Time	Received By:					Specia	al Deliv	erable I	Requiren	nents:				Chain	of Cu	stody Seal: (Circle)
	A freee.	2/5/09	1030						See	Contra	ct						INTAC	те	ROKEN ABSENT
Relinquished 🖌	(3)	Date	Time	Received By:	\mathcal{I}^{-}	Requested Turnaround Time and-or Special Instructions:													
									See	e Coi	ntrac	t							
Relinquished By:		2/6/09		Received For Leb	Pratory By:														
_	otter Drive Anchorage, AK 99518 Tel:			1		_						0087 T		-					
	er Road Fairbanks, AK 99701 Tel: (903 Island Access Rd., Unit 1B Honolulu, H			-2287								25311 8405 Te							

Locations Nationwide

Hawaii Louisiana

Jersey West Virginia

North Carolina

а

and

www.us.sgs.com

CLIENT:	TEC INC.				SGS Re	ference #:						1.5					bag		of
CONTACT:	Rick Adkisson	PHONE NO:	808.528.1445														page	÷	01
PROJECT:		SITE/PWSID#:	Red Hill BFSF		- #	Preserv. Used SAMPLE	4	N) /N		\$	1	\$ \$ \$ \$ \$	\square	2	4	4	4	4	
REPORTS TO:	Rick Adkisson		n@tecinc.com nan@tecinc.c		C O N	TYPE C ≃	a	6		IMS)									
INVOICE TO:	TEC INC	QUOTE #: P.O. NUMBER:			T A I N	COMP G =	TPH-GRO (8015B)	TPH-DRO (8015B)	VOC's (8260B)	PAH's (8270C-SIMS)	Diss Pb (6020)								
LAB NO.		DN DATE	TIME	MATRIX	E R S	GRAB	D-HdT	D-H4T	voc's	PAH's	Diss P								REMARKS
€/46-KØ)	RHMW2254-WG1	14 2/4/2009	0920	Water	10			X		X	X								3x Volume sent in 2 coolers
	· · · · · · · · · · · · · · · · · · ·			-					<u> </u>										
									_										
											<u> </u>		-						
					_			-	<u> </u>										
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						-									<u> </u>			
:									-							-			
							┼─	+	+										
· · · · · · · · · · · · · · · · · · ·																-			
	By: (1)	Date 7/4/39	Time 1530_	Received By:	ha					ng Car ng Tick					L		Sample 70 Tempe	es Reci D rature	sived Cold? YES NO C.TB= 1.4 <-1.3
Relinquished By:	2	Date 2/5/89	Time	Received By:	0				Specia	l Deliv	erable I	Requirem	ents:				Chain	of Cus	tody Seal: (Circle)
14	praco		1030)				See	Contra	ct						INTAC	т в	ROKEN ABSENT
Relinq d ished By: Relinquished By:		Date	Time	Received By: Received For Lat	popertory By						urnarour ntrac	id Time :t	and-or	Speci	al Instri	uctions			
3180 Pege	otter Drive Anchorage, AK 99518 Te or Road Fairbanks, AK 99701 Tel: (Island Access Rd., Unit 1B Honolulu,	907) 474-8656 Fax: (907) 47	4-9685	-2287	Λ	1258	B Green	brier S	treet Cł	narlesto	on, WV	0087 Te 25311 8405 Te	Tel:' (3	04) 34	6-0725	Fax:	(304)	346-076	1

i**tions Nationwide** Hawaii

Louisiana

West Virginia

www.us.sgs.com	I.

⊧ey ⊧rolina

CLIENT:	TEC INC.				SGS Re	ference #:											page	2	of
CONTACT:	Rick Adkisson	PHONE NO:	808.528.1445		1												page		
PROJECT:		SITE/PWSID#:	Red Hill BFSF			Preserv. Used	X	<u>></u> /*		<u>></u>		H03		\square			\mathbb{Z}	\square	
REPORTS TO:	Rick Adkisson	and a second sec	n@tecinc.com nan@tecinc.co		# C N	SAMPLE TYPE C =	Ê	â		MS)									
INVOICE TO:	TEC INC	QUOTE #: P.O. NUMBER:			T A I N	COMP G =	TPH-GRO (8015B)	TPH-DRO (8015B)	VOC's (8260B)	PAH's (8270C-SIMS)	Pb (6020)								
LAB NO.	SAMPLE IDENTIFICATION	DATE	TIME	MATRIX	E Ř S	GRAB	TPH-G	D-H-T	VOC's	PAH's	Diss PI								REMARKS
5)6-H	RHMW02-WG14	2/4/2009	1240	Water	5			X		X	X								
6)6-3	RHMWA01-WG14	2/4/2009	1205	Water	5			X		X	X								
					<u> </u>		<u> </u>				<u> </u>								
						ļ			ļ		<u> </u>		o						
:						ļ	 				ļ								
			l																
Collected/Relinguis	hod Bur (1)	Date	Time	Received By:	\square	<u>, </u>													
Conected/Aeninguis	00.600	74/09	1530 -	heceived by	Ę	L	فر			ng Can ng Tick									eived Cold? YES NO .C. TB= 3.4
Relinquished By:	Anaire io	Date 2/5/09	Time <i> 830</i>	Received By:					Specia See			Requirem	ents:				Chain INTAC		stody Seal: (Circle) ROKEN ABSENT
Relinquished By:	(3)	Date	Time	Received By:	$\overline{)}$				Reque	sted Ti	urnarour	d Time	and-or	Specia	al Instru	uctions	L		· · · · · · · · · · · · · · · · · · ·
								,	See	Co	ntrac	t							
Relinquished By:		Date 2/6/09	Time 110 D	Received For Lab	oratory By:														
	itter Drive Anchorage, AK 99518 Tel: r Road Fairbanks, AK 99701 Tel: (90					1511258							•	•		•			61

255 Sand Island Access Rd., Unit 1B Honolulu, HI 96819 Tel: (808) 224-6217 Fax: (808) 845-2287

5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (904) 346-078

* reations Nationwide

Hawaii Louisiana

West Virginia

w.us.sgs.com

sey arolina

CLIENT:	TEC INC.				SGS Re	ference #:	1 												-f
CONTACT:	Rick Adkisson	PHONE NO:	808.528.1445									1					pay	e	of
PROJECT:		SITE/PWSID#:	Red Hill BFSF		#	Preserv. Used	/	r)	e) (v	Ž	X	10°)	\square	\angle	\square	Z	_	\angle	
REPORTS TO:	Rick Adkisson		n@tecinc.com nan@tecinc.co		* C O N	SAMPLE TYPE C =	e ferre e ferr	() ()		MS)									
INVOICE TO:	TEC INC	QUOTE #: P.O. NUMBER:			T A I N	COMP	TPH-GRO (8015B)	TPH-DRO (8015B)	VOC's (8260B)	PAH's (8270C-SIMS)	Pb (6020)								
LAB NO.	SAMPLE IDENTIFICATION	DATE	TIME	MATRIX	E R S	GRAB	D-H-G	TPH-D	voc's	PAH's	Diss P								REMARKS
ОС-к 96-к	RHMW01-WG14	2/4/2009	1455	Water	5			X		X	X								
96-K	RHMW03-WG14	2/4/2009	1110	Water	5			X		X	X								
											<u> </u>								
	· · · · · · · · · · · · · · · · · · ·																		
														ļ					
	· · · · · · · · · · · · · · · · · · ·					ļ					<u> </u>								
									-	ļ						ļ	-		
		Data	Time	Dessived Du															
		Date 74/09	Time 1530 <	Received By	4	na	· ·		Shippii Shippii	ng Car ng Tick							Samp Temp	les Rec erature	cibe 26 26 26 20
Relinquished By:	20 paris	Date 2/5/09	Time 1030	Received /By:					Specia See			Requiren	nents:					of Cu	stody Seal: (Circle) BROKEN ABSENT
Relinquished By:	(3)	Date	Time	Received By:)							nd Time	and-or	r Speci	al Instr	uctions			
											ntrad								
Relinquished By:	(4)) Date 2/6/09	III DU	Received For Lab	oratory By:														
	otter Drive Anchorage, <u>AK 99</u> 518 Tel: r Road Fairbanks, AK 99701 Tel: (90	(907) 562-2343 Fax: (907)				151 1258													61

255 Sand Island Access Rd., Unit 1B Honolulu, HI 96819 Tel: (808) 224-6217 Fax: (808) 845-2287

5500 Business Drive Wilmington, NC 28405 Tel: (910) 350-1903 Fax: (910) 350-1557

1090476

		SAMPLE RECEIPT FORM	SGS WO#:	
Yes No	NA			
1	,	Are samples RUSH , priority or <i>w/in 72 hrs</i> of hold time ?	TAT (circle	one): Standard -or- Rush
	7	If yes, have you done <i>e-mail ALERT notification</i> ?	Received Dat	
	/	Are samples <i>within 24 hrs.</i> of hold time or due date ?	Received Tin	
		/If yes, have you also <i>spoken with</i> supervisor?		onversion necessary?
		Archiving bottles (if req'd): Are they properly marked?		AK Local Time:
		Are there any problems ? PM Notified?	Thermomete	
<u></u>	∠	Were samples preserved correctly and pH verified?	Cooler ID	Temp Blank Cooler Tem
			$\frac{1}{2}$	
				<u>14</u> °C <u>1.3</u> °C
			<u> </u>	<u>1.7 °C <u>8.3</u> °C</u>
		If this is for PWS, provide PWSID	<u>4 (v)</u>	<u>3.4 °C Q.5 °C</u>
		Will courier charges apply?		°C°C
	./	Method of payment?		readings include thermometer correction factor
	<u> </u>	Data package required? (Level: 1 / 2 / 3 / 4)	-	od (circle all that apply): Client /
	/	Notes:		er / UPS / FedEx / USPS / DHL ,
	/_	Is this a DoD project? (USACE, Navy, AFCEE)		eak / NACTERA / PenAir / Carli
			Lynden / SC	
<u>This</u>	<u>section</u>	must be filled out for DoD projects (USACE, Navy, AFCEE)		072 3188 4870
Yes	No			ple Remarks: $(\sqrt{if applicable})$
	<u></u>	Is received temperature $4 \pm 2^{\circ}$ C?	Extra Extra	a Sample Volume?
		Exceptions: Samples/Analyses Affected:	Limi	ted Sample Volume?
			MeC)H field preserved for volatile
			Field	I-filtered for dissolved
· · · · · · · · · · · · · · · · · · ·		76. () -0 ⁹ C	Lab-	filtered for dissolved
<u> </u>		If temperature(s) <0 °C, were containers ice-free? N/A Notify PM immediately of any ice in samples.		Lab required?
\checkmark		Was there an airbill? (Note # above in the right hand column)	Fore	ign Soil?
		Was cooler sealed with custody seals?		
		#/ where: 2 1 m frat + 1 alach XY		<u>must be filled if problems are found.</u>
		Were seal(s) intact upon arrival?	Yes No	
1		Was there a COC with cooler?	`	Was client notified of problems?
1		Was COC sealed in plastic bag & taped inside lid of cooler?	Individual co	mto ata di
	/	Was the COC filled out properly?		/ Fax / Email (<i>circle one</i>)
·	<u> </u>	Did the COC indicate USACE / Navy / AFCEE project?	Date/Time:	/ Pax / Linan (Circle One)
<u> </u>		Did the COC and samples correspond?	Reason for co	ontact.
<u> </u>		Were all sample packed to prevent breakage?		
		Packing material: Bububbe wap		
* <u>****</u> *******	<u> </u>	Were all samples unbroken and clearly labeled?		
·		Were all samples sealed in separate plastic bags?		
<u> </u>		Were all VOCs free of headspace and/or MeOH preserved?		, <u>, , , , , , , , , , , , , , , , , , </u>
		Were correct container / sample sizes submitted?	Change Orde	r Required?
· <u>····</u>		Is sample condition good?	SGS Contact:	
	<u>xxxxx</u> xxx Xxxx xxxx	Was copy of CoC, SRF, and custody seals given to PM to fax?		
	********			A
Notes: 🔂	mid	e Bismissing one for for PAtta (voc	leved broken	, samplel b lismissi
<u></u>	1			
217	HST	e B) smissing one jar for PAHs (rec or and a TPH-DRO jour (both received	1 brokon la	nd somed a lis

(2Ko recieved

Æ

(OM

performed by:

D

12

waived

received

required

(print): Annie

an

DOWN

2/10/09

missil

SGS

NISSILO

Completed by (sign):

Login proof (check one)

0

no.

SGS

SAMPLE RECEIPT FORM (page 2)

SGS WO#:

					74.978j				Con	tain	er V	'olur	ne				С	onta	ainer	Ту)e					Pre	serv	ativ	e	25
#	Container ID	Matrix	Test	δc	TB	1 L	500 mL	250 mL	125 mL	60 mL	40 mL	80Z (250 mL)	4oz (125 mL)	Other	AG	CG	HDPE	Nalgene	Cubie	Coli	Septa	Other	None	HCI	HNO ₃	H_2SO_4	MeOH	$Na_2S_2O_3$	NaOH	Other
١	A-C	ŀ	6RU								3				/						1			-						
	D-F		VOL								3				\checkmark	1					-			7						
	6		Diss Pb				1.										/								~					
	H,I		DRO			2										İ														
	J, K	V	PAH			ک									/								\leq							
2	A-C	1.		35							3				/	ł					4	n		>	-					
	D-F	1	Voc								3				/	Ĺ	ļ				_									
	6		extre Volul	 	<u> </u>		1										/								_	<u> </u>				
	H,I J,K L		Deo			2									/ /	†								<u> </u>						
	3,K		РАН	4		2					0				\smile	[-							
		V	Deo PAH Diss Pb For GRO	¥ 750				l	ጋ	A	© 3	6				<u> </u>					_		•							
3	A-c	1	20 GRO	Psq.							3											·								
	D-F		Voc	\mathbb{H}							3						·				_	· ·		_						
	6	-	extra Volue	$\left + \right $			1																							
	HI Ĵ	_	DRU			2									-	[
		V	PAH	H		\ \		6	T	n	0				-	1							/							
	K		Diro P.D	V				S	υ	4	0	9																		
4	A-C		<i>A D n</i>						. <u> </u>		?					-														
7	D-F		GRO VOC								33				-	\vdash	. 													
	G		Dins Pb				1				<u> </u>			· .		-					-	· · · ·	i			-				
	ΗI		DAN 16			2										\vdash									-					
	JK		DRO PAH	┢		え										+								-						
L	0			<u> </u>	1					:					<u> </u>								-							

Bottle Totals 13 24 4

Completed by:

e KA

215759 Date: 2/6/39

SGS

SAMPLE RECEIPT FORM (page 2)

SGS WO#:

									Con	tain	er V	olur	ne				С	onta	iner	·Тур)e					Pre	serv	ativ	e	
#	Container ID	Matrix	Test	QC	TB	IL	500 mL	250 mL	125 mL	60 mL	40 mL	8oz (250 mL)	4oz (125 mL)	Other	AG	CG	HDPE	Nalgene	Cubie	Coli	Septa	Other	None	HCI	N HNO3	H_2SO_4	MeOH	$Na_2S_2O_3$	NaOH	Other
5	A-C	١	6R0								3				/						-									· .
	D-F		Voc								3				\leq						-	~								
	G		Diss Pb				i										<u> </u>								/					
	H		N A 12			1									-	•						*		/	[
	Ŧ	4	PAH			1									\sim	[[]						
<u> </u>	· · · ·	· · ·	6.2								_			· · · · · · · · · · · · · · · · · · ·											_					
6	A-C D-F	1	GRO								3				\leq															· · · · · · · · · · · · · · · · · · ·
	D-F		Voc Diro PD				•			·	5				-															
	G		Dino Pb			1.	1																		-					
	H, T I,J		DRU PAH			- 2	· · · ·							·····		\mathbf{F}														
	2,0	•	FAN			٩																	/							
ス	A-C										•																			<u> </u>
	D-FO	50																												
	6				_																									
	H.F																						•					-		
	J,K\		-			 																								
7	ÁB.	ł .	GRO								ん				/						-			$\overline{\langle}$						
	CD	1	Voc								2				-						1	-		-	-					
	E		Diss Pb				120	D									/								_	ţ				
	F,G		DRO			27	Ð							· · · ·	1															
	H,I	V	PAH			27								,	\leq								\sim		,		а.			
8	A-C	١	VOL		レ						3				//	t ·]					-									

|--|

Jee Rudi Completed by: ____

Date: 275 109 2/6/09 Form # F004r16 revised 03/10/08

SGS Environmental	CUSTODY SEAL	700
Signature:	Date/Time:	TB= 2.6 C=2.2
SGS Environmental	CUSTODY SEAL	
Signature:	Date/Time:	,
SGS Environmental	CUSTODY SEAL	70 D
Signature:	Date/Time: 2/5/09	70D TB=1.4 (=1.3
SGS Environmental	CUSTODY SEAL	
Signature:	Date/Time:	(
 Environmental	CUSTODY SEAL	700
Signature: 7	Date/Time: 2/5/09	TB=1.7 c=2.3
SGS Environmental	CUSTODY SEAL	C → «, S
Signature:	Date/Time:	
SGS Environmental	CUSTODY SEAL	70D
Signature:	Date/Time: 2/5/09	TB= 3.4
SGS Environmental	CUSTODY SEAL	<= 2.5
Signature:	Date/Time: 2/5/09	

Sender's FedEx			4a Express Package Servic		Packages up to 150 FedEx First Overnigh
Date Account Number		1	FedEx Priority Overnight Next business morning* Friday shipments will be delivered on Monday unless SATURDAY Delivery is sele	Next business afternoon.* U	Earliest next business mornin delivery to select locations.* Saturday Delivery NOT availa
Sender's Name	Phone 200	17.0067 3	FedEx 2Day Second business day.* Thursd)
			shipments will be delivered on unless SATURDAY Delivery is s FedEx Envelope rate not a	1090476	most loca
Company LAN			4b Express Freight S		ver 150 Freight
Address 2020 Kapai St.		1	FedEx 1Day Freight* Next business day.** Friday shipments will be delivered or unless SATURDAY Delivery is		NOT avail
Address		Dept/Floor/Suite/Room	*Call for Confirmation:) most loca
City Hone tulus s	State HI ZIP 96.	8/19 6	FedEx 2 FedEx		FedEx 1 0
Your Internal Billing Reference			FedEx La	FedEx Small Pak, Box rge Pak, and FedEx Sturdy Pak.	Tube *Declared value limit
То			6 Special Handling	Include FedEx address in Sectio	n 3: HOLD Saturday
IU Recipient's Name	Bhana 207 5	62 2343 3	Not available for FedEx Standard Overnight, FedEx First Overnight, FedEx Express Saver, or FedEx 3Day Freight	at FedEx Location 31	at FedEx Location Available ONLY for FedEx Pr Overnight and FedEx 2Day
			Does this shipment contain da	ngerous goods?	to select locations.
Company SEAS Environment.	×/		No 4 Yes Shipper's Declaration.	Yes Shipper's Declaration 6 Dry Ice	15x
Recipient's 200 W. Potter	7		Dangerous goods (including dry ice) cannot be ship	not required.	rgo Aircraft Only
Address We cannot deliver to P.O. boxes or P.O. ZIP codes.	etter en	Dept/Floor/Suite/Room	7 Payment Bill to: Sender 2 Recipient	r FedEx Acct. No. or Credit Card No. below.	Obtain Recip. Acct. No.
Address			Sender 2 2 Recipient	3 Third Party 4 Credit Ca	ard 5 🗌 Cash/Cl
To request a package be held at a specific FedEx location, print FedEx address here.					
City American S	State Art ZIP 99	518	Total Packages Tota	al Weight	
			<u> </u>		
		τo	Our liability is limited to \$100 unless you declare a	higher value. See the current FedEx Service Guide for	details. Credit Card Au